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Abstract 
 
Significant research effort in platform based design has given numerous interesting 
and innovative solutions to some of the recent VLSI design automation problems. 
Emerging Multi-Processor System-on-Chips (MPSoC) feature reconfigurable 
components and hierarchical busses or Networks-on-Chips as communication 
infrastructure. 
 
Core Services methodology reported in this dissertation uses mechanics inspired by 
Web Services that most software engineers are already familiar with to exploit 
efficiently dynamic partial reconfiguration and run-time mapping of current System-
on-Chips (SoCs) to provide guaranteed performance increase and fault tolerance on-
demand. Core services can be efficiently implemented in platforms with 
communication infrastructures including busses and network-on-chips. 
 
Core Services define a function-level abstraction of the underlying hardware 
processing elements and a resource management mechanism (Service Broker) 
which optimises at run-time the mapping of functionality to available processing 
resources. Service Broker also measures the frequency of requests and configures 
reconfigurable elements to increase system’s performance. Fault tolerance is 
considered as a resource management problem and thus solved transparently by the 
Core Services framework. 
 
We validate Core Services methodology by applying it on Xilinx’s reconfigurable 
platform for high-end FPGAs. The stack of software and hardware components for 
communication, data management and function virtualization is implemented and 
evaluated. A user-friendly application interface (API) and a powerful device driver for 
MontaVista embedded Linux are provided. Hardware and software components are 
created automatically by an easy to use platform building application able to run on 
Windows and UNIX workstations. The platform is being evaluated with two 
computationally intensive applications, AES encryption and MP3 decoding that get 
accelerated in different levels of granularity. We conclude by presenting our 
benchmarking results on a complex use case of these applications. 
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Chapter 1.  The landscape 
 
We live in the System-on-Chip (SoC) era. Complex requirements of current 
applications have forced VLSI design engineers to integrate multiple components on 
a single chip. Efficient communication between the components is challenging and 
has been the subject of intensive research. The Network-on-Chip (NoC) 
communication scheme seems promising in satisfying the communication needs of 
current SoCs. The structure of a modern SoC featuring NoC can be seen in Figure 1. 
 

 
 

Figure 1. A System-on-Chip (Soc) featuring Network-on-Chip (NoC) 
 
Figure 2 shows the percentage of publications that include terms used in modern 
VLSI design such as reconfigurable, NoC, SoC and also Fault Tolerance. This 
figure’s data was obtained using the IEEE Xplore over the period 1990-2005. 
  

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Fault tolerance reconfigurable noc soc  
 

Figure 2. Normalized publications that include certain terms on IEEE Xplore 
 
We can see that after 2003 about 1% of the annual publications include the term 
“system on chip”. Impressive considering the different research areas IEEE Xplore 
covers. The silicon integration and new opportunities that current system-on-chips 
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provide is the hottest topic of the first half of this decade and will probably continue to 
be. We can also see that there is a steady increase of publications on 
reconfigurability. As clock frequencies are hard to increase anymore researches are 
looking at reconfigurability as a means of increasing performance by transforming the 
performance problem from clock frequency problem to an area problem were 
Moore’s law (see section 1.1) still holds true. We can also observe the emerging field 
of network-on-chips being in 2005 in about the same position where system-on-chips 
were in 2000. A final observation can be made for fault tolerance. For the last 15 
years 0.5% of all the publications on IEEE Xplore refer to fault tolerance. The reason 
is the wide meaning of this word, making it useful on many contexts but clearly there 
is a continuous need for fault tolerant systems in all levels of Electrical and 
Electronics Engineering. 
 
The key message from Figure 2 is clear. We are now designing systems-on-chip that 
have multiple processing elements possibly reconfigurable and in the very near 
future innovative designs will deploy interconnection infrastructures such as 
networks-on-chip. On the following sections we will present the current status of SoC 
design regarding the processing elements (section 1.1), communication infrastructure 
(section 1.2) and reconfigurability (section 1.3). We will conclude in section 1.4 with 
some future perspectives. 

1.1  Multiprocessor System-on-chips 
There is a constant need for integrated circuits with more processing performance 
and lower power consumption. At the same time it is increasingly hard to increase 
the operation frequency or lower the supply voltage without affecting system’s 
reliability. The answer to these constraints seems to lie in Moore’s “law” [1]; “the 
number of transistors on a chip duplicates every 24 months”. The International 
Technology Roadmap for Semiconductors predicted that chips with billion transistors 
where within reach [2] and Montecito version of the Itanium processor already proved 
that in 2006 by having 1.7 billion transistors. 
 
More transistors on a chip allow us to build complex systems optimized for certain 
application domains. More processing performance and lower power consumption is 
realized by using specialized processing elements (PEs) for tasks with different 
requirements. For example on a single chip a DSP algorithm can run on a DSP core, 
an operating system on a microprocessor and advanced video operations on custom 
hardware. Increased complexity makes designers face many challenging problems 
[3]. Power consumption increases with the number of components and may be 
attacked at device level [4], communication level [5] and software level [6]. The real-
time constrains and performance (throughput) constrains are attacked by employing 
innovative heterogeneous architectures. For example instead of the standard 
memory hierarchy (registers, caches, external memory) employed on general 
purpose computational systems a MPSoCs frequently features custom memory 
setups including FIFOs, caches and scratchpad memories. These advanced 
architectures give competitive advantage on MPSoCs over traditional symmetrical 
multi-processor systems in terms of performance and power consumption. Security is 
an emerging issue for MPSoCs. Hardware and software must be designed to be 
secure especially in mission critical applications. This overlooked design aspect has 
to be given special attention since more SoC based devices are connected to public 
networks like the Internet. Finally, the most important problem with the increased 
system complexity is the ever increasing design gap. Every MPSoC requires its own 
suite of software tools (compilers, simulators etc.) and testing and verification 
becomes increasingly complex, time consuming and expensive. The solution seems 
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to be in design reuse with a platform based design approach which is a good choice 
but not a panacea [7]. 

1.2 On-chip communication 
Many cores mean more communication between them and between the shared 
resources. This may be significant when blocks of data have to be transferred 
especially if they are small and frequent in which case hidden factors like 
handshaking and arbitization may produce significant overhead which is not visible 
unless detailed models of communication get used. 
 
Many solutions have been reported to the problem of communication. Traditionally 
busses are employed for this purpose. An ASIC designer had to design carefully a 
custom set of busses to meet the bandwidth requirements of each communication 
path. These busses where very often bi-directional, using tri-state buffers. With 
higher frequencies bus design and verification became increasingly difficult because 
wires get longer and the inductive characteristics make transmission line effects 
apparent. The amount of design re-use is also limited since protocol translators 
(wrappers) have to be used whenever there is a change on the bus topology which 
costs in terms of development time and system’s performance. 
 
It became apparent that some standardization of the bus interfaces would benefit the 
ASIC industry. Three are the most standard bus interfaces at this moment. IBM’s 
CoreConnectTM bus, ARM’s AMBA bus and OpenCore’s Wishbone interface. The 
first two come with some out-of-the-self implementations of interconnection and 
arbitization scheme for certain platforms while the third one leaves interconnection to 
the designer. CoreConnect and AMBA are both hierarchical busses featuring high 
performance busses for components such as memories and processors and lower 
performance busses for slower peripherals like communication ports. High speed 
buses tend to be unidirectional because bidirectional registers are hard to implement 
and registers are required because data transfers are pipelined in more that one bus 
clock cycles. High performance busses use multiplexers and have separate input and 
output paths that unfortunately use more wiring and area. Busses don’t scale up so 
well because only one master can own the bus at each moment. 
 
The successors of busses seem to be networks-on-chip. The idea of NoCs appeared 
at mid 2001 by the classic works of Benini and De Micheli [8, 9]. A thorough overview 
of the NoC technology its promises and details for two NoC implementations Xpipes 
and Æthereal can be found in [10] and other recent are listed in [11]. The introduction 
of NoCs forced designers to move from a computation-centric to a communication-
centric approach. New models [12, 13] and tools [14] had to be developed to aid 
design exploration [15]  and hw/sw co-design [16]. 
 
Network-on-Chips allow simultaneous use of chip’s resources by having cores or 
local busses assigned to a node on an on-chip network. Nodes can communicate to 
each other by transferring packets of data. A response to a request from a core may 
take several clock cycles to arrive but it may be large enough to pay for this latency. 
At the same time many other cores may be taking equally large responses from other 
sources if there are no routing conflicts. Networks-on-chip have the potential of 
making better use of the increasingly expensive global wiring of a chip by utilizing 
less expensive routing logic. Interestingly only wishbone interface [17] mentions 
crossbar switch interconnections (the nucleus of every network-on-chip topology). All 
busses can support network-on-chip topologies via special network interfaces as 
seen in [18]. By issuing non-blocking memory writes on NI a master core (MC) 
makes requests and sends parameter data. Then MC proceeds in doing other tasks 



 4

and when the reply to his request is available on the NI it issues an interrupt to the 
MC in order to notify that reply data are ready. The terminal core completely 
abstracts the network infrastructure and gives the programmer a relatively familiar 
programming model if you set aside the fact that the response is asynchronous. 
Alternatively polling or thread suspend on a multithreading environment can give a 
synchronous feeling of this communication. 
 
As NoCs is a new technology there are many unexplored fields. For example in [19] 
a study on the differences between battery efficiency and energy efficiency is being 
done for reconfigurable hardware. Battery behaviour is non-linear and the energy 
delivered is a function of the discharge profile. A similar study doesn’t yet exist on 
reconfigurable NoCs. Security in NoCs is also an almost untouched field. In [20] 
some possible attack scenarios are being examined. 

1.3 Reconfigurable hardware 
Reconfigurable computing has received interest for more than two decades. Despite 
of that interest there are very few industrial applications of reconfigurable computing. 
As with artificial intelligence, the reason that reconfigurable computing doesn’t yet 
seem to have produced impressive results is that it gives techniques to other 
research areas without being credited. 
 
“Reconfigurable hardware is able to merge the performance of ASICs and the 
flexibility offered by the microprocessors” [21]. Critical software loops (kernels) can 
get accelerated [22, 23] by reconfiguration and at different levels of coupling between 
the processor and the reconfigurable fabric [24] giving different performance/energy 
efficiency levels in the cost of design complexity. There are various ways to 
categorise reconfigurable computing (for a more thorough discussion see [25]). The 
most widely adopted is the fine versus coarse-grained categorisation. The former is 
referred to our well known FPGAs which have very small reconfigurable datapaths 
usually 1-bit wide and a large communication mesh that can route them very flexibly. 
There also exist coarse-grained reconfigurable processors in the form of 
reconfigurable arrays (RAs) that feature reconfigurable datapaths with sizes larger 
that 1. These feature less configuration memory, reduced reconfiguration time and 
complexity of the placement and routing problem but are less flexible than fine 
grained solutions. In [26] and [27] numerous examples of this category are presented 
with details about their programming and a discussion of the software/configware 
partitioning problem. Nowadays we see the two categories merging as for example 
fine-grained FPGAs feature coarse-grained components like multipliers, DSP 
primitives, block rams and microprocessors but even more as their building logic 
blocks are becoming complex enough to model 1-4 bit ALUs. 
 
The most important aspect of run-time reconfigurable processors that is often 
overlooked in the literature is that they impose, at least up to now, a large 
reconfiguration time during which they can’t perform any computation. This creates a 
trade-off between how often reconfigurations are decided and the speedup that the 
reconfigurable hardware provides. Partial reconfiguration [28] reduces 
reconfiguration time but increases complexity by giving the designer flexibility on the 
amount of the fabric he wishes to reconfigure. In [29] for example a two level 
reconfiguration scheme is presented to minimize reconfiguration time. In a mutli-
trheaded [30] and even more in a multi-processor environment the use of 
reconfigurable PEs has to be scheduled accurately in order to maximize hardware’s 
acceleration. Our work goes one step further by considering also communication 
costs into run-time reconfiguration. 
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Reconfigurable hardware and NoCs fit suitably well each other. The varying 
communication channel capacity demand of reconfigurable hardware can be 
addressed by dynamically reconfigurable NoC as shown in [31-33]. A comparison 
between this technique and dynamically reconfigurable busses is presented in [34]. 
Similar approaches have been examined in [35]. In [36] it is observed that NoCs 
would be an excellent routing resource for FPGAs and such a combined flow is 
presented in [37]. 

1.4 The future 
The future may not hard to predict. Two different worlds; traditional computing and 
embedded computing are converging. The problems that computer scientists were 
facing a few years ago are soon going to be faced by electronic engineers. For 
example with multiprocessor SoCs well known problems of multithreading and 
computer clusters like priority inversion, convoying, deadlocks, livelocks and 
composability [38] are going to be faced on embedded software/hardware. 
Distributed databases-on-chip (DoC) over networks-on-chip may likely replace the 
traditional shared memory in order to attack such weaknesses and provide software 
developers with a familiar programming model hiding the weirdness of the underlying 
hardware. We already see some recent work [39-42]  on the old concept of 
transactional memory [43, 44] and some new ideas [45]. 
 

 
 

Figure 3. NoC based System-on-Chip 
 
Although there are numerous thoughts at present now on the architectures that will 
be built around NoCs, the communication patterns that arise in most applications 
dictate topologies like the one shown in Figure 3. As we can see busses not only 
don’t get abandoned but are used even more but they get simple (again). Increased 
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round-trip time of NoCs prevents them from fetching instructions on a processor and 
thus each core must have its own local memory at least for storing the program. The 
way to attack the memory bottleneck is by using multiple memory interfaces 
wherever needed. Tightly coupled processors are going to share the same bus while 
clusters of processors are going to communicate via NoC. The main communication 
mechanism over NoC is likely going to be Best Effort (BE) for small data packets 
(<8kB) and thus the buffers on routers are going to consume reasonable area. 
Strategically based distributed databases-on-chip are going to satisfy the shared 
memory requirements of cores with a safe way providing transactions and coherence 
protocols. The inter-processor communication using NoCs is going to be limited to 
message passing possibly with references on database keys. All the processors will 
be multi-threaded in order to take advantage of the idle time between network 
requests and responses. 
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Chapter 2.  Introduction to Core Services 
In the following sections we are going to present briefly the Core Services Mechanics 
(section 2.2) after a short introduction to the inspiring software technology of Web 
Services (section 2.1). In section 2.3 we are going to present the advantages of Core 
Services over traditional methodologies and in section 2.4 we present related work 
highlighting the differences with Core Services. 

2.1 Web services 
According to the W3C [46] a Web service is a “software system designed to support 
interoperable machine-to-machine interaction over a network“. It power lies in the 
flexibility it provides. A Java program can invoke Visual Basic .Net functions on the 
same or another PC that could run the same or another operating system. One may 
reasonably wonder, is this enough to make a technology such a success? The real 
reason that web services are a success is that companies found it as an easy way to 
charge for their services on a per usage basis and at the same time programmers 
found it reasonably easy to use. For example by using web services, Google Maps 
can charge a very small fee per request. If web services weren’t available it should 
licence access to the whole GIS database to a client obviously in a much higher rate. 
 
Clearly it would be of benefits in terms of flexibility to deal with expanding number of 
cores with a similar approach. For example a general purpose microprocessor 
running Linux could be able to invoke a function on a DSP core or an non-
programmable hardware component. Actually it would be even better if we didn’t 
have to statically refer to a component in order to invoke the function. What we want 
is to have the work done with the best (e.g. fastest) way and we don’t really care on 
who exactly is the core that is going to execute it. 
 
So, lets see the actual mechanics behind the web services. As you can see in Figure 
4 there are three main actors for web services; the 
Service Provider, the Service Requester and the 
Service Broker. The names are self explanatory 
except of the Service Broker. This is a repository 
that holds information about web services from 
many providers. A service requester can query a 
service broker and get a list of web services that 
suit its needs, if available. This is the least 
developed part of the standard. 
 
These actors use some protocols to achieve their 
goals. The service requester makes the request 
and gets the response by using standard web 
protocols like SOAP [47], XML-RPC or REST [48]. All of them are protocols based on 
http and use XML. An XML-RPC call for example could be an http request like this: 
 
<?xml version="1.0"?> 
<methodCall> 
   <methodName>examples.getStateName</methodName> 
   <params> 
      <param> 
         <value><i4>41</i4></value> 
         </param> 
      </params> 
   </methodCall> 

 
Figure 4. Web service's 

mechanics 

http://en.wikipedia.org/wiki/Image:Webservices.png
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and a possible response could be like this: 
 
<?xml version="1.0"?> 
<methodResponse> 
   <params> 
      <param> 
         <value><string>South Dakota</string></value> 
         </param> 
      </params> 
   </methodResponse> 
 
This demonstrates the simplicity and the power of Web Services. All that is required 
is a web page request and response receipt using the widely supported XML format. 
Error handling and some primitive data types like integers, strings, structures and 
arrays are also provided by these protocols. 
 
The second part of the web services functionality is achieved with WSDL [49] and 
UDDI [50] protocols. UDDI means “Universal Description, Discovery, and Integration” 
and provides the semantics for describing the needs of an application for a Web 
Service. That in turn returns a WSDL description of registered Web Services that 
satisfy these needs. UDDI mechanisms are practically used inside companies to 
dynamically link web services on a corporate domain. 
 
Summarizing the two above, there are two components that are needed to make a 
web services interface: 
 
1. A component to pass requests and get responses from a Service Provider 
2. A component able to match Web Services to application’s needs 
 
There has been recent attempt to use reconfigurable hardware for web services [51] 
but obviously web services’ text-based communication protocols are too heavyweight 
for chip level use. 

2.2 Components of a Core Services system 
We will now present the way Core Services are realized in a multiprocessor System-
on-Chip. What we need is two kinds of hardware and software components as 
described in the previous section. In this section we will present the general 
characteristics for Core Services’ mechanics. In order to make Core Services 
efficient there are many issues which are implementation specific and depend mainly 
on the communication infrastructure. Details for these issues for common 
communication schemes can be found in the section 3.3.  Core Services don’t define 
a mechanism for run-time service registration because Service availability is usually 
known at design time. Ad-hoc service discovery would be an overhead for most SoCs 
at this moment but is easy to integrate if needed. 
 
The main actors of Core Services are: 
 
The Service Requester: This is a processing element that wants to offload itself or 
increase performance by performing a Core Service off-chip. A service requester 
may be running several service requests simultaneously e.g. more than one threads 
sleeping while waiting for services to complete. 
 
A Service Broker: This is a processing element that manages the assignment of 
service provider resources to requestors. It is responsible for being up-to date with 
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system resources availability and allocating them with an efficient way for given 
performance metrics. More than one requests may be initiated from different 
requesters and thus an arbitration mechanism is necessary.  
 
A Service Provider: This is a processing element that provides services. It takes the 
parameters from a service requester processes and sends the response back. Each 
service provider may provide more than one services but can serve only one request 
at a time. This eases the design of small embedded systems but doesn’t limit larger 
ones because a single multi-threaded processor may implement more than one 
Service Providers. Information regarding the capabilities of a Service Provider is 
being set up on the service broker at design-time but parameters like loading may 
change at run-time. The service provider doesn’t have to retain its state between two 
subsequent requests. 
 

 
 

Figure 5. A Core Service transaction 
 
Figure 5 gives an overview of a Core Service transaction. In the middle we can see 
the Service requester who initializes the transaction. On the left side the object 
broker analyzes the request and assigns it to an appropriate service provider which 
we can see in the right side. A transaction is initialized by the service requester and 
terminates either at the end of service assignment if there is no such service 
available or at the end of processing by a message to the request broker notifying 
that the resources are no longer used. 

2.3 Advantages of Core Services 
Core Services address four main problems of modern System-on-Chip design (see 
Figure 6): 
 
1. Run-Time Mapping 
2. Reconfigurable Hardware Management 
3. Fault tolerance 
4. Platform based design 
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Figure 6. Advantages of Core Services 
 
We will examine these problems, the way that others solve it and what advantages 
Chip Services provide over other methods in the following sections. 

2.3.1 Run-Time Mapping 
Traditionally static methods [52, 53] have been used for mapping communication 
transactions and computation tasks to PEs. In practice [54] mapping distributed 
applications into NoC architectures is quite difficult even with simple static mapping if 
the application is not designed for the platform at first place. Many studies have been 
done in static mapping for minimum energy consumption with realtime constraints by 
using linear programming [55] evolutionary [56] and other [57-59] algorithms. 
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Figure 7. Stating mapping 
 
In Figure 7 we can see an execution scenario with static scheduling. Processor 1 is 
master and initializes two tasks in slave processors Processor 2 and 3. All of them 
run in parallel and when they all complete the master Processor 1 returns the 
function results and is free to start another function e.g. by initializing another task in 
Processor 3. Stating mapping creates a static schedule on the processing elements 
of a system. This is being obtained via profiling and defines the performance and the 
power efficiency of the system. 
 
Run-time mapping has recently started being investigated. In [60, 61] they propose 
use-cases to reconfigure the network more efficiently, an idea that is also employed 
in [62]. Generally, reconfiguring the network [63] seems to be the preferred way to 
reduce network contention and provide fault tolerance [64-66]. 
 

 
 

Figure 8. Run-time mapping 
 
As we can see in Figure 8 run-time mapping schedules operations at run time taking 
into account the computation and communication loads. By scheduling at run-time 
the system can perform optimally under several different use cases in contrast to 
static scheduling. As Peng Yang et al. discuss [62] modern standards like e.g. 
MPEG21 and MPEG4/JPEG2000 execute code based on non-deterministic events 
and as a result design-time mapping is unable to provide optimum performance. Run 
time mapping usually employs a scheme where a master processor uses an 
operating system to profile the system and schedule tasks on slave processors. 
 
Both static and run-time scheduling won’t scale well in future MPSoCs because they 
feature multiple equivalent masters that have to compete for the same accelerating 

time 



 12

resources. In order to improve the system’s performance we need to accelerate on-
demand all the masters. 
 

 
 

Figure 9. Core Services' mapping 
 
Core Services are designed for these systems. As we can see in Figure 9 the 
requests from multiple masters are being processed by a centralized scheduler 
mechanism, the Request Broker. It is trying to optimise system’s performance by 
mapping functionality to Slave PE’s (Service Providers). It must be noted that a 
master processor may also provide services and thus invoke calls into itself. 

2.3.2 Reconfigurable Hardware Management 
There are two main problems with reconfigurable hardware. The first one is the 
communication between reconfigurable components and the second one is when to 
decide reconfiguration. A master device must be able to communicate with the 
reconfigurable component independently of its current configuration. This requires a 
level of communication abstraction. Also alternatives of reconfigurable component’s 
functionality must be available in order to address the unavailability of the 
reconfigurable processing element during reconfiguration. Finally the decision of 
reconfiguration should be made according to the current processing needs of the 
application. 
 

 
 

Figure 10. Reconfiguration support at current platforms 
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All these problems are being addressed with a very Ad-Hoc manner at this moment 
[30, 67-69]. Communication with reconfigurable components is being done by having 
several different drivers and using one of them according to the current configuration. 
The alternative implementation during reconfiguration is usually addressed at 
application level. Also reconfiguration is being decided based on the demands of a 
single processor and runs in parallel with the scheduler on the operating system. 
 
Core Services were developed while working on a reconfiguration problem. The 
problem of abstracting functionality that because of reconfiguration sometimes exists 
and others not leaded to a run-time mapping solution. 
 

 
 

Figure 11. Reconfiguration management with Core Services 
 
As we can see in Figure 11 the request broker has already all the information needed 
to decide efficiently and transparently if a reconfiguration is needed. It knows the 
demand for each Core Service and the performance gains if it was available on one 
or more reconfigurable components. The most important is that by using the Request 
Broker for reconfiguration management the whole system can be totally unaware of 
the existence of reconfiguration. It’s completely hidden behind the Core Services’ 
Applications Interface (API) and provides optimum hardware acceleration. Operating 
systems (such as Linux) can be used for Masters without the need of customizations. 
An additional advantage is that the reconfiguration management can be done in a 
non application specific manner and thus reused over designs. This is a very 
important benefit of the Core Services’ mechanism. 

2.3.3 Fault tolerance 
Fault-tolerance allows a system to continue operating properly when some of its 
components fail [70]. The main problem with VLSI systems is to ensure transient 
fault-tolerance which means tolerance to Single Event Upsets (SEUs) [71]. Fault 
tolerance is traditionally being enhanced with the following four methods (Figure 12):  
 
a) Time redundancy: A single function is being executed more than once and the 
results are compared. This is very popular technique since it requires less 
hardware/software resources but a multiple of the original time of the function is 
being used decreasing performance. 
 
b) Hardware redundancy. In contrast to time redundancy, this technique uses a large 
number of modules each one executing the same function and their results are being 
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compared. Obviously this requires a lot of extra resources but it can achieve 
increased performance. 
 

 
 

Figure 12.  Fault tolerance methods 
 
c) Software redundancy: In this approach sanity tests are being applied to the output 
data in order to verify that they are correct. This requires extra time but less than time 
redundancy technique. The fault tolerance techniques of this kind are highly 
application dependent and can hardly get reused. 
 
d) With information redundancy additional information is being used e.g. checksums 
that verify that data are correct with less performance penalty than time and software 
redundancy. 
 
The main problem of fault tolerance is adjusting the number and the kind of 
redundant system resources. We have again a resource management problem. 
Partial reconfiguration can help in the correction of SEUs on the configuration 
memory as we can see in [72]. We use it to correct efficiently SEUs on application-
level functionality. Only a small amount of system’s processes are critical enough to 
need fault tolerance.  
 

 
 

Figure 13. Typical audio/ image commercial application 
 
For example in commercial applications we frequently find computational 
requirements for data-oriented algorithms e.g. DCT and control oriented e.g. 
compression algorithms as shown in Figure 13. A fault in the DCT algorithm is 
insignificant but a fault on the compression algorithm is critical since it may cause 
loss of synchronization and system failure. If both the DCT and the compression 
algorithms can be accelerated on a reconfigurable hardware component which one 
should get accelerated? The answer is not straightforward since the two algorithms 
share a common data stream. If we accelerate the DCT algorithm and choose to 
have time redundancy for compression we may end up with a bandwidth that the 
latter can’t handle. If we provide hardware fault tolerance to the compression 
algorithm the DSP algorithm may be unable to provide the appropriate bandwidth to 
the compression algorithm. Carefully tuned dynamic resource management switching 
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between hardware and time redundancy gives the best solution in this scenario and 
most real-life applications are like this. 
 
Core Services use the run-time mapping mechanism to provide fault tolerance with 
an optimum way at a given time. The most important advantage is that they achieve 
this without any development effort. Fault tolerance is being provided by the 
framework and can also be used at design time for debugging purposes i.e. verifying 
the equivalence between hardware and software implementations. Each service call 
is being invoked with a redundancy parameter which specifies how many voting 
results (up to 16) should agree to accept a result. These voting results are being 
obtained by executing the service in the fastest combination of (hardware or 
software) service providers available at that time as we can see in Figure 14. 
 

 
 

Figure 14. Fault Tolerance with Core Services 
 
The results of a Service may be large vectors and comparing them would be a waste 
of time but most importantly waste of precious bus’s cycles in order to collect them in 
the core where voting takes place. In Core Services only one Provider returns the full 
set of results and a checksum while the others return only their checksums saving 
significant bus bandwidth. The kind of checksum is not specified by Core Services 
and this allows significant application specific optimizations. In a software dominated 
platform the use of a Linear Feedback Shift Register (LFSR) for checksums would 
require significant computational resources. Additionally by comparing only the 
checksum we may be able to save time by not performing operations that produce 
invariant results in respect to the checksum. For example in many encryption 
algorithms the final step is a scrabbling of the output parameters. If the checksum is 
a simple addition this last step is unnecessary because the sum of numbers is 
invariant to their order.  
 

 
 

Figure 15. Out of order fault tolerance with Core Services 
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Finally the processor may go on with its computations as soon as the first full result 
arrives assuming that it’s correct. Checksum comparison may take place latter when 
all Services complete and in most of the cases it will be correct giving near non-fault 
tolerance performance (see Figure 15). 

2.3.4 Platform based design 
Platform based design promises to increase productivity, decrease time to market 
and development costs by re-using out-of the self pre-verified components within a 
platform framework [73]. At this moment platform based design as provided for 
example by Xilinx via Xilinx Platform Studio (EDK) is a good step towards these 
promises. You can easily develop a complex system consisting of IP cores provided 
by Xilinx and its partners. For example for the XUP Virtex II Pro platform (see 
Appendix A) one could easily connect two PowerPC cores with RAMs and other 
peripherals by using the CoreConnect hierarchical bus. It’s quite simple to create the 
hardware and basic software drivers for this platform by using XPS giving a kick-start 
for developing new applications (see Figure 16). There is also the option to use 
MontaVista linux which offers all the software friendliness of Linux and device drivers 
for most of the essential peripherals of the platform. 
 

 
 

Figure 16. Platform based design with Xilinx Platform Studio and MontaVista linux 
 
Still, the question remains: Why to use Xilinx’s Platform Studio when there exist more 
efficient processors with equivalently large set of peripherals and at least equally 
good software support in a less power hungry and cheaper application oriented 
System-on-Chip like Philips’ Nexperia. The answer is reconfigurability. Xilinx’s flow 
supports the addition of custom hardware accelerators who offer the potential of 
unbeatable acceleration. 
 
But how well does this platform’s flow supports its only competitive advantage? The 
answer is not so well. There is only one wizard that allows the creation of a template 
custom hardware and software peripheral. In fact a developer for this platform can’t 
avoid studying the underlying PLB/OPB busses, work explicitly to convert the 
endianess’s of the signals and resolve a lot of handshaking problems. From software 
side a template is provided that slightly abstracts the underlying bus. A custom driver 
has to be developed in order to transfer data to the custom core and get responses 
back. Of course there is no support at all for Linux for which someone has to re-
develop a complete device driver in order to access the peripheral. After all this effort 
what does someone have? A component that is very tightly coupled to the platform. If 
the communication infrastructure changes e.g. turn to NoC then the hardware will 
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have to be modified again or at least get “wrapped” possibly loosing some of its 
performance. The device drivers also will change. Hopefully if the device driver is 
well written, user applications won’t need modifications. The worst of all from a 
business point of view is that all these IPs are very platform specific and for example 
for sophisticated components it would be very expensive to switch from e.g. Xilinx to 
Altera. Obviously every company wants to be vendor independent in order to take 
advantage of vendor’s competition so it’s forced to implement its own abstraction 
over these platforms for its IPs. 
 

 
 

Figure 17. Core Services' stack over Xilinx’s Platform 
 
Web Services deal with machine-to-machine interoperability and Core Services do 
the same on a platform-to-platform level. They achieve this by adding one software 
and two hardware abstraction layers over Xilinx’s flow. From the hardware layer the 
communication layer hides completely the bus and Core Services’ communication 
protocol and provides an interface suitable for memory-like (slaves) components. On 
top of it that the data storage layer holds the data in the form of one independent 
RAM for each variable used for a service provider. It provides an interface that is 
suitable for processor-like components (masters). On top of it lies the actual Service 
Provider which can access each variable independently increasing the maximum 
achievable throughput and thus minimizing the computational time. By having two 
layers of abstraction we support two stage reconfiguration [29].  Implementation at 
the top abstraction level is very simple. For example for the calculation of a 
mathematical expression like 1 2out in in const= + ⋅

uuur uur uuur uuuuur
 an implementation could be 

almost as simple as this: 
 
out[count] <= in1[i] + in2[count] * const[count]; 
outwe[count] <=’1’; 
 
Passing the variables, returning the parameters and communicating with the software 
is being handled by the middle layers. 
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From software side there are similar improvements over the Xilinx’s platform. A Linux 
Device Driver that provides access to the Service Broker and the Service Providers is 
provided. Each of them is being accessible as a single device in the /dev/ directory. 
On top of that the low level and high level API are provided to the applications. The 
low level API provides more flexibility to the application developer in terms of 
performance but requires better knowledge of the Core Services’ functionality. The 
high level API uses the low level API and gives the developer a completely abstract 
remote procedure call interface. No knowledge of Core Services internals is required 
at this level. For example a call using the high level API would be as simple as this: 
 
void funDefaultMAC(int * in1, int * in2, int* out) { 
 // Default (software) implementation 
 for (int i = 0; i < 10; i++)  
  out[i] = in1[i] + in2[i] * const[i]; 
} 
… 
csMAC(funDefaultMAC, in1, in2, out, NO_REDUNDANCY); 
 
As you can see, there are no hardware references at all. This abstraction level is 
much more platform independent than a traditional call like this: 
 
send_peripheral_data(REQUEST, BROKER_ADDRESS); 
p = get_peripheral_data(BROKER_ADDRESS); 
 
for (int i = 0; i < 10; i++) 
   send_peripheral_data(in1[i], PERIPHERAL_BASE_ADDRESS[p]); 
… 
 

 
 

Figure 18. Core Serices Builder: The Core Services' GUI 
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As described in [73] with the ever-increasing pressure of time to market 
infrastructures and tools must be developed in synchrony with design methodology. 
Core Services’ methodology is being accompanied by tools and infrastructure 
including Core Services Builder (see Figure 18), a user friendly interface via which 
one can customize Core Services and Service providers and have all the hardware 
and software created automatically. The tool provides interactive information for the 
communication costs and performance gains in order to aid designer’s decisions.  

2.4 Related Work 
Several other researches have attempted to solve some of these problems with 
approaches similar to Core Services. We will present the most similar works and 
highlight the points where Core Services differ. 
 
Object oriented methodology has the idea of polymorphism which means that a 
function call may map to different implementations according to the class of the 
object that it belongs to. In [74] they expand their previous [75]  ASIP (application-
specific instruction set processor) methodology to use the NoC to dispatch with zero 
overhead virtual methods to hardware or software implementations. They do not 
provide dynamic resource management as Core Services. 
 
In [76] they present a Java based abstract stream decoder technology for 
reconfigurable hardware. They lack many of the strong semantics of Core Services. 
In the very interesting and somehow technical [77] transparent management of 
reconfigurable hardware or software components is being proposed. They use CAN 
bus for communication. “Run-time optimizations” and “partial run-time reconfigurable 
modules” are left for “future versions”. 
 
The work in [78] has many similarities with our by referring to Common Object 
Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI) and 
having an “IP Core Lookup Service” which instantiates objects and decides 
reconfigurations which is similar to our object broker. They also use objects to 
abstract hardware which is not quite suitable for reconfigurable hardware and it 
naturally leads them to use ad-hoc methods for serialization in order to aid relocation. 
Although they claim that their methodology improves performance they have no 
mechanism to guarantee it as they don’t consider computation or communication 
costs at all. They assume hardware implementations are faster than software without 
considering the communication costs and they implicitly assume that all hardware 
accelerators provide the same speedup for a functionality which is true only if the 
same implementation is being used. Core services are stateless which simplifies both 
hardware and software and makes relocation unnecessary. They also provide 
reconfiguration mechanism and run-time mapping which optimize for performance 
and guarantee acceleration via the performance deadline. 
 
On the other hand in [79] they present a heuristic similar to ours (see section 3.2.3) 
for computation and communication costs and they use it to map tasks to PEs. All the 
resource management is being handled by a single master processor and although 
the technique is supposed to target on multi-processor systems they describe a one-
master-many-slaves architecture. Core Services Phase I mechanism (see section 
3.2.1) allows multiple masters to gain access to accelerating resources. 



 20

Chapter 3.  Core Services methodology, mechanics 
and implementation 

3.1 The methodology 
Core Services are meant to be the equivalent of web services optimized for on chip 
communication. The steps of the Core Services methodology are the following: 
 
Step 1. Profile the system and sort its functions by the total amount of time 
spent on each. 
By starting this methodology it is assumed that there exists a functional software 
prototype of the system. By profiling we identify the functions that consume most of 
the time. Obviously this is the first place to look optimizing system’s performance. 
 
Step 2. Decide if they are suitable for hardware implementation. 
We give a detailed description on section 3.4 on how to decide if a function is 
suitable for hardware implementation. 
 
Step 3. Replace with service calls and provide default service implementation. 
Assuming that the platform has a Core Services’ implementation this is as easy as 
modifying slightly the original function and calling it via Core Services’ wrapper. 
 
Step 4. Test the software only implementation on the platform. 
At this level we can verify that the system works correctly after adding the Core 
Services’ functionality by using the default software service implementations. 
 
Step 5. Calculate the estimated savings of making a hardware accelerator for 
this function. If constrains aren’t yet met, accelerate more functions. 
Communication cost for the given platform can be accurately estimated at this stage 
because the length of the call and return values are known. A hardware engineer can 
give estimates on the speed of a hardware implementation of a certain functionality. 
As a result we can know in such an early stage if the savings suffice to meet 
system’s constraints. If not we can turn more functions to Core Services. If hardware 
implementations can’t or needn’t be provided latter the system will still be functional. 
 
Step 6. Create hardware test data. 
By running the application as described on the previous step, we can create as many 
test data as required with an automatic or semi-automatic way. Time consuming 
system-level simulations are being avoided by using Core Services. 
 
Step 7. Create hardware instance of Core Service using automatically 
generated service stack and verify with the test data. 
Hardware templates generated by Core Services’ fingerprint and test data can 
significantly ease the implementation of the hardware component. Manual 
optimizations on the templates can be performed if time allows. 
 
Step 8. Calculate the actual savings of making a function Core Service. If the 
constrains aren’t yet met, create more hardware components or optimize more 
the existing ones. 
At this stage we have actual data for the time it takes the hardware to complete the 
service. Precise evaluation of the savings can be performed.  
 
Step 9. Test the software/hardware implementation on the platform. 
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Now system level testing can be performed. Testing can be eased by the fault 
tolerance facilities of Core Services. Both software and hardware instances are being 
called and if the checksums of the results aren’t the same warnings may be issued. 

3.2 Core Services’ communication protocol and algorithms 
 

 
 

Figure 19. Core Service transaction details 
 
Figure 19 shows a Core Service transaction. We will present the details of the 
communication protocols and the algorithms that are involved in a Core Service 
transaction. 

3.2.1 Phase I. Service request 

3.2.1.1 Service Request 
Phase I of a service transaction is the service request. In this phase, the requester 
contacts a request broker and asks for service. The form of a request packet can be 
seen in Figure 20. 
 
0 15 16 31

Service ID Requester ID Providers 0001 
Performance deadline 

 
Figure 20. Service request packet format 

 
The MSB of the first word is 1 to denote a service request packet. The fields on a 
service request packet are the following: 
 
1. The service ID of the service requested 
Each service is described by its unique ID. This is system-level unique and is 
assigned at design time. It is 16-bits long giving a maximum of 65536 services. 
 
2. The ID of the service requestor 
The ID of the service requestor is needed in order to return the response to the 
requester and calculate inter-core costs. For example the communication costs over 
NoCs may depend on the distance between the cores. This is 8-bit field so it 
supports up to 256 service requesters. 
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3. The number of service providers requested 
The number of service providers may seem unnecessary but its’ necessary to 
support fault tolerance. A single request may require more than one service providers 
for example two for fault tolerance in a moderate faulty environment. 4-bits are 
reserved for this number giving a potential of 16 service providers per request. If an 
application that requires fault tolerance is run on a platform that doesn’t support it the 
performance will be reduced compared to another platform that supports it because 
of software simulation of multiple calls. 
 
4. The performance deadline to be met 
The performance deadline is the number of clock cycles that the service requester 
estimates it will take itself to complete this service. This is being used to provide a 
run-time adjusted threshold to the service broker in order to decide if it’s reasonable 
to assign a service provider to this request.  
 
In fact the performance deadline is just a metric and it isn’t bound only to time. It 
could be for example a combination of energy and time. In most cases, better time 
performance means also better energy performance [80-82] so it’s reasonable to use 
time as a metric. The easiest way to statically predict this number is by profiling. If a 
big variance in execution time is expected, the service requestor should multiply it by 
a load factor dependent, for example, on the number of active threads/processes in 
order to reflect its load. In might also be useful to under-estimate slightly if it’s more 
important to off-load the requester in order e.g. to provide better behaviour in 
unpredictable real-time events. 

3.2.1.2 Service assignment 
The response by the service broker can be seen in Figure 21. 
 
0 31

Providers  
Provider Unique ID 

… 
 

Figure 21. Service assignment packet format 
 
The fields on a service assignment packet are the following: 
 
1. Number of providers 
This is the number of providers that have been allocated to the requester for this 
request. It may be less than the number of service providers requested e.g. zero if no 
such service is available or none meets the performance deadline. This field is 4-bits 
long as the respective request field. 
 
2. Provider ID 
A list with unique identifiers for the specific service follows. These ID’s are being 
used to send the parameters as described bellow. The meaning of these ID’s is 
platform depended and may be for example base addresses, IPs or port numbers. 

3.2.1.3 Why is a service broker needed? 
A service broker is needed at least as a means of having a central repository of 
services and their availability status. An alternative to this would be to have a 
completely ad-hoc system in which each request would be broadcasted to the 
‘market’ of service providers, they should respond by bidding for the service request 
and the best offers would be accepted. No matter how nice this scenario sounds it 
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has important performance and power drawbacks. The service request gets 
broadcasted to all the service providers, even those that may not provide a service. 
Additionally a large number of bids would have to be communicated even from 
providers that have non chance of being accepted. Obviously all these end up in a 
waste of performance and power. The existence of the central ‘marketplace’ of the 
service broker saves all these resources. 

3.2.1.4 Why does a service broker make the service assignment? 
Alternatively the request provider could be given a complete list of services and 
metrics let decide itself. Apart from the increased interface complexity and the 
communication overhead such an implementation there are other important 
drawbacks. The external broker DEDICATES the providers to the requesters. If this 
dedications didn’t hold true in a multi-threaded but even more in a multi-processor 
environment a lot of collisions would occur. Requesters of the same Core Service 
would reasonably try to allocate the best resource. The first one checks if it’s free and 
locks it with an atomic operation. The others check with failure and either look for an 
alternative service provider or wait until the first one completes and take their turn. 
Obviously this is too much overhead for an embedded system. It is much better to 
have a central locking mechanism that manages the service providers. This is true 
for small number of service requesters. If there were a lot of service requesters the 
availability of the broker would become an important bottleneck. However a service 
broker can easily be implemented by multiple cores using a shared memory for their 
synchronization. Obviously the decision of making the assignment on the service 
broker scales well even in much larger systems. 

3.2.2 Phase II. Service execute 

3.2.2.1 Parameter passing 
Phase II of a service transaction is the service execution. In this phase, the requester 
communicates directly with service provider to pass the parameters and get the 
response.  
 
The fact that the service provider doesn’t have to retain its state between two 
subsequent accesses simplifies both hardware and software. We can’t be 
guaranteed that two subsequent service requests are going to be serviced by the 
same service provider. As a result, the state should be transferred from one service 
provider to another which is generally impossible because different service providers 
may be incompatible of each other. Even in systems where only one service provider 
exists for each service a request from another thread may interleave between two 
subsequent requests from a thread resulting in service corruption. 
 
It may seem as a waste of scarce system resources that we write data from the main 
memory to the hardware accelerator and we should prefer a shared memory model 
where data are being passed by reference instead. Our decision is safer for several 
reasons: 
 

1. Data may not be in the main memory but in a local cache. 
2. Even if you move data by reference, the service provider still will have to read 

them, so you don’t save the reading part. 
3. Core Services give that ability implicitly. One can pass a pointer as variable 

and a service provider capable of reading the main memory will use it to read 
the data. In this case one must be careful a) to give a valid physical memory 
location which may be different from a pointer’s virtual address b) to resolve 
cache coherence and memory ownership issues that may arise. 
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The ability to have variable sized variables is important in order to support functions 
with strings as parameters. 
 
Core Services’ parameters and responses are only arrays of 32bit words. This is 
done because it’s only meaningful to run a service on another processor if it takes 
considerable amount of time. Apart from random number generation and some rare 
cryptographic applications with extremely high complexity large amount of time 
means large amount of data as well. 
 
0 15 16 31  

Provider Unique ID Requester ID   
Service ID Variables s  C  

Size of array in words (n) 
Element[0] 

… 
Element[n] 

s tim
es 

 
Figure 22. Request packet format 

 
The format of a request packet can be seen in Figure 22. It contains provider unique 
ID, the Requester ID that will be used to receive the response, the service ID 
requested and the number of variables (parameters) that are being passed to the 
service. The (C)hecksum flag tells the provider if a full reply should be send or just 
the checksum for each variable. Then s parameters follow each one prefixed by its 
size in words and then the words of the data in sequence. At the end of this packet, 
the computation begins.  

3.2.2.2 Response getting 
The service provider sends back the response. This may be done by pulling or by 
pushing depending on the platform i.e. the requester may read the data from the 
provider or the provider may send the data to the requester. In the former case, there 
must be a mechanism to tell the requester that the computation was completed and 
the data are ready. This may be done by polling or more efficiently by an interrupt if 
the platform supports it.  
 
0 15 16 31  

Provider Unique ID Requester ID   
Service ID Variables s   S C  

Size of array in words (n) 
Element[0] 

… 
Element[n] 
Checksum 

s tim
es 

 
Figure 23 Response packet format 

 
A similar format with the request packet is being used for response packets as shown 
in Figure 23. The only difference is the existence of a checksum that is being used if 
the service supports fault tolerance. If the S flag is set, then the packet contains 
checksums. If the C flag is set, then the packet contains only the checksum and not 
the variables themselves. Bare packet’s size and thus communication cost is 
significantly reduced. The kind of checksum is platform dependent and may be more 
or less software-friendly. 
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3.2.2.3 Free resource 
A free resource packet (see Figure 24) is being sent to the service broker in order to 
notify that the providers have been freed and can get reused. 
 
0 15 16 31
Providers XXXXXX XXXXXX 0000 

Provider Unique ID 
… 

 
Figure 24. Free resource packet format 

 
The MSB of the first word is 0 to denote a free resource packet. The fields on a free 
resource packet have similar meaning to the ones of resource assignment packet 
(see section 3.2.1.2). 

3.2.3 Mapping algorithm 
Mapping of the requests to the service providers is being implemented by the object 
broker. There are many different ways to do them but the more intuitive way is the 
following one that is actually being suggested by the Core Services’ infrastructure. 
 
A request provides the following data: The number of providers requested pn , the 

deadline dt , the service ID S  and the requester ID rID . We can see in Figure 19 
four times that characterize a transaction: _service requestt , _parameter putt , _response gett , executet . 

The _parameter putt  and _response gett  can be merged to a single value, the communication 

time:  _ _comm parameter put response gett t t= + . 
 
The problem is that we have a set of service providers SP  from which only 
ASP SP⊆  are available at a given time and each providing a set of available 
services spA  and we want to return a subset X ASP⊆  of p pa n≤  service providers 

that provide the service ,xS A x X∈ ∀ ∈ , have minimum cost 

( ) ( ) { }, , |c x c s x X y SP y X≤ ∀ ∈ ∀ ∈ ∉  and less than the performance deadline 

( ) ,dc x t x X< ∀ ∈ . We would like to have a fast algorithm because it affects the 

_service requestt  which is a pure overhead in service call. 
 
The easiest way to find the best X  is to maintain a list with one node for each 
available service provider which has a list with one node for each available service 

spA . This algorithm has a worst case complexity of ( ) ( )( )( )spO size ASP max size A⋅  

which may be bad for large number of service providers or available services. 
 
bestcost ←∅  
X ←∅  
for each service provider x in ASP  do 

 for each service s  in xA  do 

  if ( s S=  and ( ) dc x t<  and ( ) ( ) ,c x bestcost t t X< ∀ ∉ ) then 

   if ( )( )psize X n>  then 
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    find_and_remove(worst_element( X )) 
   end if 

   ( )bestcost bestcost c x← ∪  

   X X x← ∪  
  end if 
 done 
done 
 
Another algorithm which has much better performance can be implemented by using 
hash tables of services sh  with each entry containing a sorted list of active service 
providers ASPl  for that service. This is a very fast algorithm that gives very fast 

access time ( )O 1  but requires much more memory and considerable housekeeping 
effort to keep the structure up to date when availability of services changes. 
 

[ ] 1...s pX h S n⎡ ⎤← ⎣ ⎦  

 
Both algorithms are useful and there are a lot more algorithms in the middle between 
them. The first one is good for hardware implementation or in a processor with limited 
amount of memory or in a system that has a small amount of service providers and 
services per provider. The second one is more suited to large systems with many 
service providers and services and with taught deadlines that can’t afford an 
increased _service requestt  but can afford the extra memory needed to keep a well 
organized registry. 
 
The main problem that we set aside until now is the calculation of the cost for 
executing a Core Service in a service provider ( )c x . There are two dangers. The 
one is to oversimplify and reduce the efficiency of run-time mapping, the other is to 
over-analyze and reduce the performance benefits because of the computational 
overhead of calculating the cost. We want to include the computational and the 
communication costs. 
 
The computational costs can be represented as a s pn n×  matrix cc  of the average 

clock cycles of execution where sn  is the number of services, pn  is the number of 

providers. Run-time variable load factors can be expressed by a vector lf  of pn  

elements. ( )lf i  = 1 when the processor i  is average loaded, < 1 if it’s under-loaded 
and > 1 if it’s overloaded. The computational cost including loading is 

( )comp cc c diag lf= ⋅ . 
 
The communication cost can be approximated with an average bandwidth ,i jbw  in 
clock cycles/word from service requester i  to service provider j . The number of 
words per service sw  includes parameter passing and response getting and is known 
at design time. The total communication cost ,comm s i jc w bw= ⋅  is known at design 

time and can be represented with a s r pn n n× ×  matrix. Note that if the 

communication costs present large variance and the average bandwidth ,i jbw  
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induces large errors we can easily add a run-time variable load factor to this model 
as in the case of computational costs. 
 
The total cost ( )| , ,c x r s lf  for a given service s , requester r  and load factor lf , 
can be calculated with three array accesses and a multiplication. It is 
( ) ( ) ( ) , ,,

| , , comp comm s x rs x
c x r s lf c c= + . If these two matrixes cc  and commc  are set, Core 

Services are ready to work. 
 
For example in a system with 2 service requesters and 3 service providers for 2 
services.  Given a run-time load factor ( )1.1 1 0.8lf =  and a computational cost  
matrix 
 

30 20 70
40 50 12cc ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
we have a total computational cost of  
 

( )
33 20 56
44 50 9.6comp cc c diag lf ⎡ ⎤

= ⋅ = ⎢ ⎥
⎣ ⎦

 

 

For given inter-processor bandwidth ,

1.3 1.3 2
1 1 1.3i jbw ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and ( )10 20sw =  

words per service we have a communication matrix: 
 

13 13 20 26 26 40
,

10 10 13 20 20 26commc
⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

 

 
The total cost of services is: 
 

( ) ( ) ( ) , ,,

46 33 76 70 76 49.6
| , , ,

43 30 69 64 70 35.6comp comm s x rs x
c x r s lf c c

⎛ ⎞⎡ ⎤ ⎡ ⎤
= + = ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠
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Figure 25. Total cost for two Core Services 
 
As we can see in Figure 25 the cost of the two Core Services varies not only with the 
service provider but also with the service requester. 

3.2.4 Reconfiguration management 
Given that we have a reconfigurable service provider able to provide n  services 

1... nS S  and currently it’s configured to provide service cS . Each service gives a 
corresponding speedup of 1... ns s  each time it executes and in the last frame  
requests we have 1... nn n  requests for each service. The reconfiguration penalty is pt  
during which it can’t provide any service. 
 
The potential speedups in the last frame  requests for the i -th service are i is n⋅ . 
There is a best service bS  for the last frame for which ,b b i is n s n i b⋅ ≥ ⋅ ∀ ≠ . If there 
are more than one best services with equal potential speedups we select as bS  the 
current service cS  if it belongs to that set otherwise a random service from that set 
and we continue. 
 
If the best service bS  is the one that we already run cS  then there is nothing to do. 
We have an optimum solution. If not then we have to examine the opportunity cost, 
“the most valuable forgone alternative”. That’s b bs n⋅ , the potential speedup for our 
best service. But we are already having a profit of c cs n⋅  because of the chosen 
service cS . So the actual loss is: loss b b c ct s n s n= ⋅ − ⋅  and it has units of time. 
Assuming that we will have the same profile of requests in the near future, If we 
invest pt  time of inactivity we will gain a future profit increase of loss b b c ct s n s n= ⋅ − ⋅  

per framet . We just have to define a threshold time tht  in the order of pt . If the 

accumulated losst  for the same bS  exceeds tht  we decide a reconfiguration c bS S← . 

The algorithm has a complexity of ( )O n  because of argmax  and is as follows: 
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After a frame is complete: 

( )argmaxb i iS s n← ⋅  

loss b b c ct s n s n← ⋅ − ⋅  

if ( 0losst > ) then 

 if ( b blastS S≠ ) then 

  _cut loss tht t←  

 else 

  _ _cut loss cut loss losst t t← −  

  if ( _ 0cut losst < ) then 

   Reconfigure to bS  

  end if 
 end if 

 blast bS S←  

end if 
 
For example if we have two services 1S  and 2S  that provide a speedup of 1 60s sμ=  
and 2 300s sμ=  respectively and the chosen service at given time is cS = 1S . From 
the statistics we know that in the last 20frame =  requests that lasted 1framet ms=  

we have 1 15n =  and 2 5n =  requests. The reconfiguration penalty 10pt ms=  and 

thus we define a threshold time 5tht ms= . 
 

Service: 
1S  2S  

Potential speedup 
1 1 900s n ns⋅ =  1 1 1500s n ns⋅ =  

 
Obviously the best service 2b cS S S= ≠ . The 600loss b b c ct s n s n sμ= ⋅ − ⋅ = . If  2S ’s 
potential speedup continues to exceed 1S ’s for subsequent frames with the same 
rate, then a reconfiguration will be decided after 5 0.6 9th losst t ms ms= =  frames = 
180 requests. 
 
To demonstrate the operation of the algorithm we will do simulation. We model each 
service as independent Markov Chain that has two states Active (A) and Sleep (S) 
and transition probability Ap  and Sp  respectively (see Figure 26).  
 

 
 

Figure 26. A service as a two state Markov process 
 

A S 
Ap

1 Ap− Sp
1 Sp−
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With this model we create simulation events and we check the behaviour of the 
reconfiguration algorithm. More specifically we can model the following kinds of 
services: 
 

  
Sp  Ap  ST  AT  

a) infrequent that last a lot 0.1 0.1 50% 50% 
b) frequent that last a lot 0.4 0.1 40% 60% 
c) infrequent that don’t last a lot 0.1 0.4 60% 40% 
d) frequent that don’t last a lot 0.4 0.4 50% 50% 

 
Examples of these categories are the following: 
 
 A program that uses a service: Example sequence 
a) heavily in a single routine SSSSSAAAAAASSSSSSSSSSSSAAAAASSSS
b) heavily on multiple threads SAAASSAAAAAASSSAAAAAASSAAAAAAASS
c) occasionally in a single routine SSSSSSSSAASSSSSSAASSSSSAASSSSSSS
d) occasionally on multiple threads SASASSSSASASSSASSASSASAASSAASSAS
 

ST  and AT  in the table above are the amount of time spent in sleep and active state 
respectively as predicted by Marcov theory. Every correct algorithm will behave 
correctly on cases b) and c) by servicing them and ignoring them respectively. 
Challenges exist in cases a) and d) where the probability of being in one of the two 
states is equal and thus the decision depends upon the patterns of service requests. 
 
The metric that we would like to optimise is the behaviour of our reconfigurable 
machine in respect to the ideal reconfigurable machine, which services the service 
with maximum speedup for each given time i.e. has zero reconfiguration time. 
 

real speedupperformance
ideal speedup

=  

 
In our simulation we use two services, one of type a) and one of type d) and we 
observe the performance for different cases. The fact that we have only two doesn’t 
significantly affect the results because this algorithm considers only two services 
anyway; the best and the currently selected. 
 
Experiment 1: 20frame = , 5tht ms= , 50pt steps= , 10 runs of 10000 time steps 
each. We run for the combinations of 3 different values of speedups (50 sμ , 100 sμ , 
150 sμ ) for each process. The results can be seen in the following table and in 
Figure 27. Statistical errors are within 2% in every case. 
 

  infrequent that last a lot 
 Speedup( sμ ) 50 100 150 

50 0.67 0.799 0.856 
100 0.781 0.664 0.748 

frequent that 
don’t last a lot 

150 0.845 0.729 0.659 
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Figure 27. Performance vs speedups 
 
We observe that when the two classes of problems have the same speedup factors, 
the performance of the reconfiguration manager is the poorest which is what we 
expect because the two classes are equivalent from the perspective of speedup and 
thus the error rate is 50%. On the other hand when one class provides more speedup 
than the other, the performance of the manager gets optimized.  
 
The most important feature is that the performance is symmetrical which means that 
the reconfiguration manager performs equally well on both classes of services a) and 
d) with a slight preference on infrequent that last a lot (a) which is reasonable given 
that they behave more predictably. 
 
Experiment 2: ) 50as sμ= , ) 150ds sμ= , 5tht ms= , 50pt steps= , 10 runs of 10000 
time steps each. We run for different frame  sizes from 2 to 16 requests. The result 
can be seen in Figure 28. 
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Figure 28. Performance vs frame size 
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We can see that the frame size doesn’t matter as long as it’s larger than a certain 
number which is in our case 9 requests. This is what we expected. For very small 
size of frame  the manager will delay the reconfiguration significantly because the 
best service bS  changes frequently causing reset of _cut losst .  
 
Experiment 3: ) 50as sμ= , ) 80ds sμ= , 20frame = , 50pt steps= , 10 runs of 10000 

time steps each. We run for different tht  from 50 to 7250 sμ . The result can be seen 
in Figure 29. 
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Figure 29. Performance vs tth 
 
We observe again that the value of tht  is not important as long as it’s larger than 
1000 sμ  and smaller than 5500 sμ . If tht  is too small, a reconfiguration will be 
decided too frequently increasing performance losses. If tht  is too large, 
reconfiguration will get delayed resulting performance losses. We can see that the 
performance for extremely small values of tht  is bellow 0.5 which means worst than 
having a selection at random. This is reasonable considering that with such a low tht , 
most of the time the service provider will be reconfiguring itself providing no speedup 
at all. Obviously it’s worth having a large value of tht , in the order of reconfiguration 
time pt . 
 
Some final comments on the algorithm. The fact that we operate based on the last 
frame  requests acts like a low pass filter that smooths peaks on requests. The fact 

that the threshold acts on the accumulated losst  ( _cut losst ) makes the algorithm decide 
faster a reconfiguration if it faces huge loss, or slower if the loss is small. For small 
losses it may not be worth switching and suffering a cost of pt  if you are not 
guaranteed that the situation is permanent. Finally, although this algorithm is simple it 
works quite well because it performs on high-quality information that represent 
directly the structure of the problem and fortunately are available within the service 
broker module. 
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3.3 Implementation issues 
Here we present implementation details for the most important communication 
infrastructures at this moment; busses and network-on-chips. Advanced issues like 
implementation on network-on-chips that support multicasting and connection with 
off-chip networks are discussed in Appendix E. 

3.3.1 On a bus based system (CoreConnect/Amba) 
IBM’s CoreConnect and ARM’s AMBA are both standarized SoC bus interfaces. We 
can see diagrams taken from their specifications [83-85] in Figure 30 and Figure 31. 
They both feature a high speed bus (AHB/ASB, PLB) and a low speed buses (APB, 
OPB/DCR) which get connected through bridges. Arbiters exist in order to manage 
shared resources. 
 

 
 

Figure 30. A typical AMBA system 
 
 

 
 

Figure 31. CoreConnect block diagram 
 
Core Services exist for providing acceleration and because communication costs are 
very important (see 3.4.2) the only place for both the service broker and the service 
providers is the high speed bus. For compatibility with NoCs the communication 
between them is going to take place in a serial manner meaning that it uses a small 
number of memory (or I/O) mapped registers as shown in Figure 32. 
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 Service broker Service provider 
Data register SB_BASE_ADDR [R/W] SPX_BASE_ADDR [R/W] 
Status register SB_BASE_ADDR+1 [R] SPX_BASE_ADDR+1 [R] 

 
Figure 32. Bus-based architecture registers 

 
The registers are 32-bit long for the processor’s programming model even if they are 
implemented in another way. Figure 33 saws the communications that occur on a 
bus based system with Core Services. 
 

 
 

Figure 33. Core Service mechanics on bus-based architecture 
 
Phase I (service request) is initialized by reading the service broker status register 
(SBSR) in address SB_BASE_ADDR (see Figure 34). This is the only place where 
inter-processor synchronization is required since the service broker is capable of 
serving only one processor a time. 
 

MSB LSB 
X R B 

 
Figure 34. Service broker status register (SBSR) 

 
If the broker is free, the B(usy) flag is clear and on the read transaction, the flag gets 
set immediately (atomic operation). Then the requester can start writing word by 
word the service request sequence (see 3.2.1.1) on the service broker data register 
(SBDR). 
 
The service requester then polls SBSR and waits until the R(eady) flag is set. Then it 
can start reading the service assignment response (see 3.2.1.2) on the SBDR word 
by word. The Provider Unique ID in the response packet is the base address 
(physical) of the assigned service provider (SPX_BASE_ADDR). After reading the 
last word, the service broker becomes available and the B(usy) flag gets cleared. 
 
Phase II gets initialized when the service requester sends parameters by writing a 
request packet (see 3.2.2.1) to each service provider’s data register (SPDR) in the 
address SPX_BASE_ADDR+1. The Requester ID field holds a unique identifier that 
may be used by the provider to issue an interrupt on the service requester when it 
completes. If the platform allows multiple slaves to be active at the same time, which 
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is highly unlikely, this feature could be used to reduce communication costs by 
broadcasting the parameters. 
 

MSB LSB 
X D 

 
Figure 35. Service broker status register (SBSR) 

 
By polling the service provider’s status register (SPSR) (see Figure 35) the device 
can know when the computation has completed by checking if the D(one) flag is set. 
If an interrupt is being used, the interrupt is being cleared by reading SPSR. The 
response packet (see 3.2.2.2) is being read serially word-by-word by the SPDR. 
When the last word gets read the D(one) flag of SPSR gets cleared. 
 
When the service completes the providers are registered as free by writing to the 
SBDR a free resource packet (see 3.2.2.3). The same procedure as with service 
request (Phase I) must be followed in order to assure atomic operation. 
 
Some final notes. If a DMA master is present in the platform, it can offload the 
requester from the communication with the provider by using the alternative path (2) 
instead of (1) shown in Figure 33. Service broker’s transactions are small (a few 
words), the waiting time is small and thus polling is used for communicating with it. 
On the other hand the large time of computation of service provider makes interrupts 
more attractive. If there is only one processor the service broker may be 
implemented within it in software because there is no need of mutli-processor 
management. Mind that it must be thread-safe. 

3.3.2 On networks-on-chip 
The two most well known Network-on-Chips are Æthereal [18, 86, 87] from Philips 
and Xpipes [88]. Their mechanics are similar as described in [10] and their network 
interfaces (NI) support similar core interfaces (OCP and OCP/DTL/AXI respectivelly). 
We will assume that there exists a mechanism for sending an array of words (packet) 
to a processing element unique identified by a number (IP) and a callback 
mechanism gets invoked when a message with a certain IP is being received. An API 
with only two functions can implement this mechanism: 
 
noc_write(IP, PACKET_SIZE, PACKET) 
noc_callback(PACKET_SIZE, PACKET) 
 
This simple implementation assumes that the Core Services functionality is the only 
usage of the NoC at least for the nodes involved. Obviously this is not reasonable but 
it’s easy to enrich the two functions with a port  parameter that allows the NoC to be 
used for Core Services’ purposes only on a specific port number. 
 
By using this API the implementation of Core Services is very easy because they 
have been designed with NoCs in mind. As we can see in Figure 36 there is a limited 
amount of IPs that are used by the mechanism.  
 

Service requester Service broker Service provider 
SR_IP SB_IP SPX_IP 

 
Figure 36. IPs used by the Core Services on a NoC architecture 
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Phase I (service request) is initialized by the service requester sending a service 
request packet (see 3.2.1.1) to the Service broker (SB_IP). The Requester ID field of 
the packet must be filled with service requester’s IP (SR_IP). There is no need of 
synchronization as a service broker is receiving and serving only one packet at a 
given time. Then service broker responds by sending a service assignment response 
packet (see 3.2.1.2) to the requester by using the SR_IP form the request. The 
Provider Unique IDs in this packet are the Service Provider’s IDs (SPX_IP’s). 
 
Then the service requester can initialize Phase II by sending a request packet (see 
3.2.2.1) to each SPX_IP. The Requester ID field of the packet must be filled again 
with service requester’s IP (SR_IP). Then each service provider that completes 
sends a response packet (see 3.2.2.2) back to the service requester by using SR_IP. 
At the end service requester sends a free resource message (see 3.2.2.3) back to 
the SB_IP to free the service providers. 

3.4 What to make a Core Service? 
Obviously no one wants to put engineering effort in making something a Core 
Service without guaranteeing some performance benefits. Unfortunately the number 
of factors that contribute to the acceleration is large and guaranteeing it is quite 
difficult. However there are some theorems and observations that can help us define 
what is a good candidate for a Core Service. 

3.4.1 Estimating speedup margins 
Fist of all there is Amdahl's law [89-91] that simply tells us that if we take a function 
that takes up the 30% of the time and accelerate it 3 times (300% speedup) making it 
taking 10% of the original total time we have a 25% total system speedup: 
 

70% 30% 1.25
70% 10%

+
=

+
 

 
Even if we accelerated that function to take no time at all the system acceleration 
would be 43%. Imagine the engineering effort that could be put on such a huge 
acceleration on a single function with a moderate system-level result. 
 
You can see the time spent in each function for our demo applications in the 
following table. From a computational aspect, the AES encryption is more likely to 
give higher performance benefits from a computational aspect. 
 

Application Function Time spent in function 
AES encryption rijndaelEncrypt 65% 
Mp3 decoding synth_full 37% 

 
Amdahl's law in a more formal form states the following: 
 

( ) ( )
1systemspeedup

1 P P S
=

− +
 

 
where P  is the proportion of system performance spent on the function that we 
optimize and S  is the speedup that we achieve in that function. 
 
This law allows us to estimate the available improvement margins and help us select 
the best functions to optimize; the ones that take the most time. The problem is that it 
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doesn’t tell us how much each function can get optimized in advance. This is a very 
hard problem of algorithm analysis theory but there exist a thesis that can help. It’s 
called parallel computation thesis. 
 
The parallel computation thesis [92] states that if an algorithm uses s(n) storage in a 
sequential machine, in a parallel machine, it can do the same s(n)k steps. More 
formally it states that “the time on any “reasonable” model of parallel computation is 
polynomially equivalent to sequential space” [93]. Even though evidences of its truth 
have been given quite early [94], not much progress [95] has been made in recent 
years for a formal proof. 
 
If we want to paraphrase it a little we can tell that the more extra memory a 
sequential algorithm uses, the more time it takes on a parallel computer. We are 
referring to parallel computation because hardware accelerators increase 
performance by utilizing parallel resources (multipliers, lookup tables etc.).  Hardware 
engineers can intuitively understand that parallel computation thesis is true 
considering that large memory requirement usually means a lot of state overhead 
that prevents parallelism. 
 
The worst case of code one can face is the inherently sequential code. This is code 
that can’t get parallelized. Some examples of these kinds of codes are [96]: 
 

• code protected by mutual exclusion in some manner 
• conditional critical regions 
• monitors 
• barriers 

 
In [97] a model is being presented able to classify algorithms as inherently sequential 
and it's being used to prove that some graph algorithms are inherently sequential. 
Obviously it’s not worth trying to accelerate an algorithm that is inherently sequential. 
 
Practically code segments that can easily get accelerated usually include lookup 
tables (e.g. state machine implementations, string matching– regular expressions), 
integer calculations, data intensive mathematical transforms, operations with bit-level 
manipulations or non-multiple of 8 bit data (e.g. LFSRs) or vector operations. 
Potential benefits also exist in “FOR loops” with few “IFs” inside. 
 

 

Warning! Control oriented segments of code 
(e.g. with a lot of error handling - exceptions, 
many ifs with variable operands) should be 
avoided for acceleration. 

 
It should be kept in mind that embedded processors have highly optimized 
datapaths, efficient caches and usually run on a much higher speed than local buses. 
In order to anticipate the communication costs, the hardware acceleration has to be 
massively parallel. Faster interfaces like Xilinx’s Auxiliary Processor Unit (APU) 
controller may lessen in the near future the communication costs and broaden the 
acceleration margins. 

3.4.2 Estimating communication overhead 
As presented in [98] the communication costs on a high-performance reconfigurable 
environment can easily become the performance bottleneck. What they propose as a 
solution is a pipelining between computation and communication. In [51] they 
propose to increase the granularity of the hardware accelerated functionality until you 
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have acceptable levels of communications. This is usually not an option because of 
the engineering effort it required. Other more advanced techniques like compression 
could also be worth trying. Although Core Services don’t prevent, they also don’t 
enforce the use of any of those techniques. The problem of communication remains 
and has to be carefully justified to ensure acceleration. 
 
The first problem is that data has to get transferred from the service requester to the 
service provider. The main argument is that the core would have to read these data 
anyway, so it’s not a pure overhead. The way that an efficient core will send data to 
the service provider is with a loop like this: 
 
1: LOOP: REG <- [DATA++] 
2: [SERVICE] <- REG 
3: JMP DATA!=SIZE LOOP 
 
In most cases core’s speed is higher than the bus’s speed and thus instruction 2 is 
the main bottleneck. Instruction 1 may come at free in the (highly likely) case that the 
data are in cache and would be read by the algorithm anyway. Instruction 3 is 
negligible especially in the large data transfers we are interested in because the 
branch is going to be predicted successfully. 
 
A second problem is that the state of the system that is being used by the function 
must be transferred for each call because Core Services are stateless. Hopefully in 
most stream operations that are more likely to be chosen for acceleration the amount 
of state is limited. But it exists. For example, in order to use the AES encryption 
service we have to send 52 words of key data just to encrypt 4 words of plaintext 
which if you multiply with the number of calls means that we have to transfer 141Mb 
of state overhead in order to encrypt an 11Mb long file. We can see in the table 
bellow statistics on the execution of the two different applications on the same file. 
 

Application Function Calls 
AES encryption rijndaelEncrypt 710475 
Mp3 decoding synth_full 14340 

 
In functions with a large number of calls the communication cost and more 
specifically the state overhead must be careful considered before making them Core 
Services. Hopefully this overhead is easily predictable for a given platform. Even in 
the case of Core Services over NoC, the average and worst case latencies can be 
accurately predicted as shown in [99]. 
 
There are solutions for the communication overhead. Using DMA transfers takes 
away the load of transferring from the process requester. This is useful only if the 
process requester has something else to do in parallel i.e. runs multiple processes. 
The drawbacks are that DMA masters take silicon area and lower performance by 
stealing bus cycles from the processor as presented in [100]. 
 
In general the best solution is to map variables that have to be shared with the co-
processor to a fast scratch-pad memory. Xilinx OCM-interface for example is 
traditionally [101, 102] being used for this purpose. By mapping variables there you 
don’t have to move them at all as computations can be done in-place. Both PowerPC 
and hardware accelerators have single-cycle access in those bi-directional block 
RAMs. Use of these memories is not supported natively by Core Services. We must 
note that different processes will have to compete for these scarce resources and 
explicit compiler and operating system support has to exist for using them [103]. 
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3.4.3 Other aspects 
A service provider is allowed to call other Core Services but this feature is highly 
unlikely to be used in practice because it decreases performance. As a result, a 
function that has chances of being accelerated must be leaf function i.e. not call any 
other function.  
 
In some cases, a block in a function needs acceleration while the rest is extremely 
awkward and inefficient to accelerate e.g. uses a lot of system’s space. In these 
cases, we have to refactor the code slightly and create a function with the block that 
is efficient to accelerate. 
 
In most of cases readily available software code is hard to parallelize. In [38] 
Microsoft’s chief researchers admit that “leveraging the full power of multicore 
processors demands new tools and new thinking from the software industry” and 
they do so in September 2005 when multi-processor cores have already widespread! 
Writing hardware-friendly software will become a necessity in the next years but until 
then hardware engineer’s job will be hard. Stream processing [104, 105] software is 
naturally hardware-friendly software and might be an appealing option. 
 
Finally, reconfigurable hardware resources are not infinite. As a result experience 
and a lot of exploration should be used to solve the trade-off between acceleration 
and hardware resources, which in some cases will mean lower clock rate and higher 
power consumption. As demonstrated in [106] with look-up table based decoders 
found in the JPEG and MPEG protocols the parallel/serial trade-off can be attacked 
systematically and give efficient results. 
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Chapter 4.  Implementation on a reconfigurable 
platform 
First we will present the implementation of Core Services’ framework on this platform 
(section 4.1) and then demonstrate its usage with the two applications, AES 
encryption and mp3 decoding (section 4.2). 

4.1 Implementation of Core Services on Xilinx’s platform 
An overview of the Xilinx tools and design flows is being provided in Appendix A. 
Here we will concentrate on the hardware (section 4.1.1) and software (section 4.1.2) 
components and the Service Builder (section 4.1.3) used by our Core Services 
implementation. 

4.1.1 Hardware components 
A hardware stack has been implemented that abstracts the underlying bus 
implementations and thus makes the design more portable while at the same time 
reduces the design time. These designs are fully customizable through a single 
package (array_types see Appendix B.1) and use extensively generics and generate 
statements in order to adapt to user requirements. This allows easy customization by 
the Service Builder platform builder (see section 4.1.3). 
 

 
 

 
Figure 37. The Core Services' hardware stack over Xilinx's stack 

 
In Figure 37 we see the Core Services' hardware stack over Xilinx's stack. The first 
level, closer to the PLB bus is the Service Inteface level that handles the 
communication according to the Core Service’s protocol. This is actually a state 
machine shown in Figure 38 and its VHDL interface can be found in Appendix B.2. 
This state machine is able to parse the input packets and generate output packets 
from/to the processor. It creates signals that are suitable for memory like peripherals 
by providing the Variable Number, equivalent to Chip Enable (CE), the Word 
equivalent to the Address, the Data and the variable_valid which is equivalent to 
Write Enable (WE). Some other signals are also used but in many cases they are set 
to constants. Service Interface handles also protocol-side fault tolerance by featuring 
the appropriate states into its state machine. It doesn’t calculate CRC’s itself because 
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in the case of a bare packet (packet where only CRCs are being sent) computation 
results are not read at all by the Service Interface and only CRCs are requested from 
higher levels. 
  

 
 

Figure 38. The Service Interface state machine 
 
At the higher level we have the Default Variable Manager component which we can 
see in Figure 39 and its interface in Appendix B.3. 
 

 
 

Figure 39. Default Variable Manager 
 
The Default Variable Manager is exactly what the Service Interface would expect to 
see from component’s side. A set of memories, one for each input and output 
parameter. For each variable at least one Block Ram is being used even if it is one 
byte long. This is not a problem because plenty of Block Rams are available in every 
Virtex II FPGA and gives us a significant advantage; a word from each input and 
output variable can be accessed within a single clock cycle from higher levels. The 
way that memory and processing speed trade-off has been resolved in our case is 
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simple but must be suitable for most Service Providers. Of course if something more 
advanced is required, one can override this level and implement its own variable 
storage layer (this is what we did for our applications as you can see in the following 
sections). This component uses heavily GENERATE blocks in order to provide all the 
customization that is needed regarding the number and size of input/output variables. 
The interface that it provides to the processing element is that of a master processing 
element i.e. a processing element that generates addresses for the memories and 
expects or writes data from/to them. 
 
Exactly that’s what Default Services are as we can see in Figure 40 and Appending 
B.4.  
 

 
 

Figure 40. Default Services' Interface 
 
Default Services are provided by the framework as a default implementation that 
makes vector addition and is useful as a template to rapidly implement new 
functionalities. Default Services provides a very powerful interface to the processing 
elements. The power of this interface lies on its simplicity. With Default Services we 
have the exact equivalent of a software function in hardware. All the input and output 
variables of the function are available at this level on the hardware and there are no 
platform dependent signals at all (apart from a single checksum  - see Appendix D.1). 
At this abstraction level the component is really reusable but more importantly this is 
the hardware abstraction level from which many C to RTL tools start to operate. 
Obviously this is an important benefit of our framework for realizing accelerated 
hardware/software co-design flows. 

4.1.2 Linux Device Driver and the API 
From software side an equivalently large contribution has been made. 
 

 
 

Figure 41. Core Services' software stack 
 
As we can see in Figure 41 and Figure 42 Core Services are implemented with a 
Linux Driver and an API. There are certain reasons that have influenced these 
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partitioning. Our platform uses only one PowerPC processor and thus Service Broker 
need not be external to our device. However, we want our API to be able to work 
consistently in cases where the Service Broker is external and that’s why we have 
wrapped the service broker within the Linux Driver. This driver provides the API with 
no more functionality than the one that would be available if the Service Broker was 
external to the device. The Device driver is also needed to provide I/O operations to 
our platform. Due to memory protection of Linux, direct I/O operations are not 
allowed from user space which means that our API can’t directly access the bus and 
the Service Broker or any of the Service Providers (Actually this may be done by 
using ioperm() but it’s very slow and bad practice in general). I/O operations directly 
affect the performance of the system (see appendix D.2). 
 

 
 

Figure 42. Layers and implementation files. Shaded files are platform specific. 
 
The device driver consists of several files and is written again with a generic way. 
Platform dependent parameters like the number of Service providers, number and 
IDs of services, performance costs, input output variables e.t.c. are contained in 
platform.c and platform.h which allows easy customization from the Service Builder 
GUI (see section 4.1.3). In the development of the driver precious help was given by 
the Linux Device Drivers book [107]. It was initially prototyped under SUSE 9.2 
(Kernel 2.6) and then ported to MontaVista Linux (Kernel 2.4) with admittedly less 
trouble than we expected. 
 
/dev/csbroker 
ioctl() operations: 
1. CS_BROKER_REQUEST 
2. CS_BROKER_FREE 
 
/dev/cs0 (example: AES accelerator) 
/dev/cs1 (example: reconfigurable accelerator) 
/dev/cs2 (example: mp3 accelerator) 
… 
 
read()/write() operations 
 

Figure 43. The interface provided by the Device Driver 
 
The driver provides the interface shown in Figure 43 to the applications. The device 
/dev/csbroker is the Service Broker and provides the two functionalities discussed in 
section 3.2.1. Then for each Service Provider, a device is being added in the form 
/dev/csX where X is an increasing integer number. Which provider corresponds to 
which hardware component is insignificant since the broker is aware of the sequence 
and returns adjusted Provider identifiers. 
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The API provides two levels of functionality. The lower level implements the 
communication with the Service Broker and the Service Providers. At this level the 
developer has full control over the actual sequencing of operations like requesting 
resources and releasing them but must be aware of Core Service’s mechanics. An 
experienced developer can fine tune performance by using the low level API. The 
high-level API consists of one function declaration for each Service with exactly the 
same form as described in the Service Builder (see section 4.1.3) and an additional 
redundancy parameter for Services that require fault tolerance. Obviously the high 
level API provides a great level of abstraction of the underlying hardware and Core 
Services’ mechanics making development easier and faster. 

4.1.3 Service Builder platform generator 
As we saw in the previous sections there are various parameters that have to be set 
on C and VHDL configuration files. Recognizing that customization effort could be a 
significant disadvantage of the Core Services’ methodology we implemented the 
Service Builder tool in JAVA that one can see in Figure 18 in page 18. With this user-
friendly tool the developer can customize all the aspects of Core Services’ platform 
and then all the files are going to be created for him. More specifically one directory 
is being created for each Service Provider including its VHDL sources customized 
and ready to be imported to the XPS. Another folder is being created for the software 
part providing both the Linux device driver and the API customized and ready to get 
compiled with PowerPC’s gcc. This tool significantly simplifies the amount of 
knowledge needed to apply Core Services and prevents errors thus reducing the 
development time. 

4.2 Applying the methodology on the two demonstration 
applications 

We will now apply this methodology on the two demonstration applications. In each 
step the process will be described for each of the two applications, AES encoding 
and mp3 decoding. This way similarities and differences can get highlighted. AES 
encoding is being done with version 0.7 aescrypt [108] and mp3 decoding is being 
done with version 0.15.1b of libmad [109]. Testing of the latter is performed with 
minimad application which comes with the libmad. 
 
Step 1. Profile the system and sort its functions by the total amount of time 
spent on each. 
 
We performed this step for both applications on a PC by using gprof. Then we 
verified that the same profile holded true with PowerPC–generated traces examined 
with the cross-compiled gprof. Both applications were profiled with the same input 
data (the same mp3 file got decoded and encrypted). The profile for the AES 
encryption is the following: 
 
  %   cumulative   self              self     total            
 time   seconds   seconds    calls  ms/call  ms/call  name     
 65.09      1.10     1.10   710475     0.00     0.00  rijndaelEncrypt 
 27.22      1.56     0.46     1388     0.33     0.33  cryptblock 
  7.69      1.69     0.13                             blockEncrypt 
  0.00      1.69     0.00     1389     0.00     0.00  ewrite 
  0.00      1.69     0.00        1     0.00     0.00  aes_set_key 
 
The profile for the mp3 decoding is the following: 
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  %   cumulative   self              self     total            
 time   seconds   seconds    calls  ms/call  ms/call  name     
32.05      7.30     7.30    14341     0.00     0.00  synth_full 
 19.53     11.75     4.45    14341     0.00     0.00  output 
 10.36     14.11     2.36    57364     0.00     0.00  III_huffdecode 
  9.79     16.34     2.23  1500278     0.00     0.00  III_imdct_l 
  9.53     18.51     2.17  1032552     0.00     0.00  dct32 
 
We can see that these applications have different difficulties. The first one is slow 
because rijndaelEncrypt is called too many times and is computationally intensive 
whereas the second one is slow because synth_full is just computationally intensive. 
We expect increased communication costs on the first case because of the large 
number of calls. We also see that  the first one offers better potentials of system-level 
optimizations according to Amdahl's law because 65% of the time is being spent on 
it. 
 
Step 2. Decide if they are suitable for hardware implementation. 
 
We can see the source code for the two functions on Appendix C.2 and C.3. It is 
quite difficult to understand how exactly these functions work because they have 
been identified as performance bottlenecks by software developers and thus 
optimized (and made cryptic) in several ways. This would make the life really difficult 
for an automated C to RTL tool. These functions are also almost not documented at 
all. After some careful examination and several test runs the functionality became 
clear. 
 
The function rijndaelEncrypt takes an input parameter and xors it with a key for each 
round. Then it uses each byte of the result to index four different tables T1-T4 which 
contain the same elements but permutated with a complex way. Then they take the 
results of those four tables and xor them together producing the output parameter 
which is used as input parameter for the next round. This operation is being repeted 
11 times for 128-bit key. The software developer has optimized the implementation 
by excluding from the main loop the first and the last rounds that are slightly simpler. 
As a result we have a complex operation repeated 11 times using constant tables 
with minor exceptions. In other words; ideal for acceleration. 
 
The function synth_full is not so ideal. First of all it calls another function, the DCT32. 
That is not a performance bottleneck so there is no need to implement it in hardware. 
The rest of this function (after DCT32) gets called 2 channels x 36 samples x 14341 
calls = 1032552 times and according to profiling it takes on the PowerPC 75μs/call 
which translates to 8300 clock cycles. By inspecting the source code one can easily 
see that there is a lot of complexity with many special cases etc. If we calculate the 
amount of data that has to be transferred we will see that there are: 16xfo tables = 
128 words, 1xfx tables = 8 words, 16xfe tables = 128 words, + return 32 words. This 
means in total 296 words = 5920ns in a 100MHz bus cycle with transfer efficiency of 
2cycles/word. Obviously we can save about 15μs with a fast implementation which 
means 250% function speedup and 25-30% system performance increase according 
to Amdahl's law. 
 
The problem is that the hardware will have to be complex because we need a state 
machine able to do all the pointer management. This way the clock cycle might be 
needed to be lowered and silicon space would be wasted to run sequential code that 
could run more efficiently on the processor. In order to overcome these drawbacks 
we apply Core Services in finer granularity. We can see that the code in the function 
uses actually a single computational primitive two times. The primitive:  
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 ML0(hi, lo, (*fo)[0], ptr[ 0]); 
 MLA(hi, lo, (*fo)[1], ptr[14]); 
 MLA(hi, lo, (*fo)[2], ptr[12]); 
 MLA(hi, lo, (*fo)[3], ptr[10]); 
 MLA(hi, lo, (*fo)[4], ptr[ 8]); 
 MLA(hi, lo, (*fo)[5], ptr[ 6]); 
 MLA(hi, lo, (*fo)[6], ptr[ 4]); 
 MLA(hi, lo, (*fo)[7], ptr[ 2]); 
 MLN(hi, lo); // Optional 
 MLA(hi, lo, (*fe)[0], ptr2[ 0]); 
  MLA(hi, lo, (*fe)[1], ptr2[14]); 
 MLA(hi, lo, (*fe)[2], ptr2[12]); 
 MLA(hi, lo, (*fe)[3], ptr2[10]); 
 MLA(hi, lo, (*fe)[4], ptr2[ 8]); 
 MLA(hi, lo, (*fe)[5], ptr2[ 6]); 
 MLA(hi, lo, (*fe)[6], ptr2[ 4]); 
 MLA(hi, lo, (*fe)[7], ptr2[ 2]); 

*pcm1++ = SHIFT(MLZ(hi, lo)); 
 
or in other words: 
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So lets see what we have if we make this primitive a Core Service. We have to 
transfer 1xfe table = 8 words, 1xfo table = 8 words and return 1 word. This means 17 
words = 400 ns with similar conditions as before. This primitive is being called 32 
times in each synth_core which means that it takes 75μs/32=2.3 μs. This means that 
with an efficient implementation we can have a speedup of 160% which translates to 
a system speedup of 15-20%. Now comes the important part. This implementation 
uses 296/17=17 times less memory than the previous implementation and also has 
significantly simpler control logic. We can pessimistically estimate that this 
implementation is half the size of the previous one. As a result we can fit roughly two 
such modules in the same area. In a heavy loaded multi-threaded or even better 
multi-processor environment this means 30-40% increase in system’s performance. 
This module is also significantly easier to create and verify. This is an example of the 
conclusion drawn in section 3.4.3. There is a trade-off between hardware and 
acceleration is difficult to identify and optimize. 
 
Step 3. Replace with service calls and provide default service implementation. 
 
This was as easy as replacing the original code segments with function calls with the 
primitives provided by our Core Services’ platform. Some variable renaming was 
required and some attention in modifying variables in a similar way as the original 
implementation. For example in case of mp3 decoder the variable pcm1 was 
increased 16 times inside the loops and by using the function these increases were 
not reflected back to the original variables (call by value). Thus we had to add 
manually a pcm1+=16 instruction. 
 
Step 4. Test the software only implementation on the platform. 
 
The software only implementation was tested successfully after fixing minor errors 
described in the previous step. 
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Step 5. Calculate the estimated savings of making a hardware accelerator for 
this function. If constrains aren’t yet met, accelerate more functions. 
 
This step aims on industrial applications. In our case we assume that accelerating 
only the two functions described before satisfies the performance constraints for our 
system.  
 
Step 6. Create hardware test data. 
 
This step got performed manually by modifying slightly the Core Service’s 
implementation to save function call’s data on a file with a VHDL-friendly manner. 
Future Versions of Core Services may further automate this step by automatically 
creating VHDL testbenches. 
 
Step 7. Create hardware instance of Core Service using automatically 
generated service stack and verify with the test data. 
 
The Hardware templates generated by Core Services were used as a starting point 
for our hardware component device. We decided to customize them by going down 
to Service Interface level discarding the Default Variable Manager and the Default 
Service components in order to increase performance and minimize area. By doing 
so we implemented custom 128-bit wide variables required by the AES algorithm in 
order to increase performance by accessing more data simultaneously. We also 
saved memory (area) on the mp3 component because we avoided storing the data 
on memories completely. Data are being used as soon as they arrive. We also save 
time with this technique making the component having virtually an impressively small 
computation time of just 3 clock cycles after the last word arrives! 
 

 
 

Figure 44. AES accelerator block diagram 
 
The block diagram of the AES component can be seen in Figure 44. Each T-Table is 
being implemented efficiently by a ROM which translates to a Block Ram on the 
FPGA. A simple state machine tunes the whole system which is able to complete the 
block encoding in less than 100 clock cycles. The synthesized core including Core 
Service’s interface uses roughly 3% of the FPGA. 
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Figure 45. Simulation of the AES accelerator 
 
We can see in Figure 45 a simulation of the AES component. It’s impressive that 
even in this ideal case where one word is being transferred at each clock cycle, 
communication is almost as time consuming as the computation. By using the bus, 
about 10 clock cycles are being used for each word transfer which means ten times 
longer communication. 
 
In Figure 46 we can see the block diagram for the mp3 decoder. This component is 
more complex than the AES encoder because it is a pipelined implementation. The 
32x32 bit hardware multiplier was created by using Xilinx’s Core Generator tool and 
features 5 stages of pipeline internally. In order to access the –synchronous read- 
constant table that holds the multiplication coefficient (second operant of the 
multiplication) we need another pipeline stage. Tuning these pipeline stages requires 
a carefully coded state machine because input data will not arrive in each clock cycle 
thus input handshaking must be used to stall the pipeline. This implementation 
completes as we mentioned before in 3 clock cycles and it uses roughly 4% of 
FPGA’s area. 
 

 
 

Figure 46. MP3 accelerator block diagram 
 

Computation Communication Commu. 
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Figure 47. Simulation of the MP3 accelerator 
 
In Figure 47 we can see simulation of the MP3 accelerator. The unequally distributed 
pulses are the data-ready signals for our design. By providing data with varying rate 
we verify that the pipeline works correctly. We can see that as soon as the final data 
arrives the computation completes as expected.  
 
Step 8. Calculate the actual savings of making a function Core Service. If the 
constrains aren’t yet met, create more hardware components or optimize more 
the existing ones. 
As in step 5 this step aims on industrial applications. In this case we assume that 
performance constraints are met. The benchmarking results are presented in section 
5.1. 
 
Step 9. Test the software/hardware implementation on the platform. 
 
Some inconsistencies were found at this level. Because the original test vectors were 
created under windows on a little endian machine whereas the final implementation 
was running on a big endian machine (PowerPC) there was a slight incompatibility on 
the AES module. This of course doesn’t mean that C is not portable.  The compiler 
used to issue warnings about incompatible pointer assignments but the original 
application was not designed with cross-platform compatibility in mind. With slight 
modifications we converted AES accelerator to big endian and the design completed 
successfully. 
 
 

End of data transfer 
Computation finished 
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Chapter 5.  Evaluation and future work 

5.1 Benchmarking and results 
 
We created a system with the following components (see Figure 48); a PowerPC, an 
AES accelerator, an mp3 accelerator and an (emulated) reconfigurable component 
able to provide both the mp3 and the AES services. 
 

 
 

Figure 48. Test system configuration 
 
By using an XPS project we had verified at step #8 of the methodology that hardware 
implementations, including communication costs were almost three times faster than 
software implementations (see Appendix D.3). After moving to the Linux environment 
and by using read/write system calls hardware efficiently was dramatically reduced 
and software calls became slightly faster than hardware calls. We propose later in 
this chapter ways to improve this performance. We delayed artificially the software 
function calls in order to retain the context of “hardware acceleration”. As we 
mentioned in section 2.4 hardware implementations are not always faster than 
software if you examine them on a realistic context including communication costs, 
caches and higher clock frequency of the processor. 
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Figure 49. Performance over time with accelerators inactive 
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In order to evaluate the performance of Core Service’s implementations we use a 
realistic test case. We run three AES encoding and four MP3 decoding instances 
concurrently. We start one process after another such as transient behaviour can 
also be studied. We use a utility that we created to measure the throughput. We find 
the maximum throughputs and then normalize our datasets according to them. The 
results can be seen for accelerators inactive in Figure 49 and with accelerators active 
in Figure 50.  
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Figure 50. Performance over time with accelerators active 
 
What we actually see is the combined effort of Linux scheduler and Core Service’s 
functionality and that explains the noisy measures.  At the beginning we can see the 
run of the three AES processes. When first AES gets loaded it has the complete 
focus of the system so it runs on its maximum performance. We can see that in 
accelerated form it gives 100% of system throughput while in non-accelerated form it 
gives only 50% of system throughput because software implementation is slower. 
Then when a second and the third AES process runs in the non-accelerated case 
Linux’s scheduler works on a round-robin fashions and cycles the focus of the 
processor on each process giving that saw-like profiles (blue, pink, yellow in figure 
Figure 49). When we have accelerators enabled we can see a completely different 
profile. When the second and the third AES processes run they all provide the same 
throughput no matter system’s load. This is because hardware acceleration makes 
computations complete faster and thus scheduler’s round robin is smoothed out 
providing the expected; independent acceleration to all the processes. In the same 
manner if we had a multi-processor system all the cores would get equally 
accelerated.  
 
When mp3 processes run we don’t get the result we would expect at first-level. We 
see that in the non-accelerated case we have slightly higher throughput. This is not 
so unexpected. Linux’s scheduler realizes that the AES function is slow and gives 
priority to the mp3 service. By examining Figure 49 it is clear that mp3 processes 
“steal” performance from AES encryption. We will show later that despite “stealing” 
system’s performance is superior in the accelerated case. What is also clear is that in 
the accelerated version there is no visible degrade on AES or MP3 process’s 
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performance no matter how many processes we are running. In the steady state, 
every process seems to give 50% of its peak performance.  
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Figure 51. System’s performance with active/inactive accelerators 
 
We can see an overview of total performance of the system for these two cases in 
Figure 51. There is the 3 point moving average of the sum of performances for each 
case. It’s clear that the accelerated version outperforms the non-accelerated 
especially in the case where we expected it to exceed; a heavily loaded system. 
Future systems will be heavily loaded not by multiple processes but from multiple 
processors that will have to compete for the acceleration resources and we can see 
that Core Services can successfully handle this case. 

5.2 Summary 
In this dissertation we proposed a new design methodology for multiprocessor 
system-on-chips inspired by the widely adopted Web Services technology. We 
specified its mechanics by the means of communication protocols and algorithms 
and we validated the algorithms with simulation models. Then we described in detail 
the means in which these mechanisms can be implemented in platforms with 
communication infrastructures like busses and network-on-chips. Communication 
protocols were designed with NoCs in mind and thus they have a straightforward 
efficient implementation on NoCs. 
 
Then we implemented the hardware and software components that are needed for 
applying this methodology on Xilinx high-end FPGA’s platform. More specifically we 
developed hardware components for communication, data management and function 
layers that accelerate the design and abstract the underlying bus topology making 
the component significantly more reusable. We also developed software components 
including Linux device drivers and two-level API’s that make hardware readily 
available to software designers with minimum effort. The higher level API completely 
hides the hardware and application’s software is actually unaware whether the 
function is being run on hardware or software. We also developed a JAVA application 
for automatically generating these software and hardware components customized to 
our current application’s needs as described on our Graphical User Interface. 
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Obviously the development time for future accelerators on this platform using Core 
Services will be much shorter by using the Core Services Builder. 
 
Finally the methodology and the platform got verified by applying it to two 
applications, AES encryption encoding/decoding and mp3 decoding with different 
levels of granularity. On AES encryption the most time-consuming function was 
accelerated while in mp3 a sequence of frequently used operations of the most time-
consuming function was accelerated. This way we kept the control-intensive 
operations on the PowerPC and all the data-intensive operations on the hardware 
accelerators as hardware/software co-design suggests. The two applications were 
run on a hardware platform consisting of one AES Service Provider, one mp3 Service 
Provider and one composite Service Provider able to provide both functionalities and 
treated as reconfigurable component and profiles of throughput on complex test 
cases were created. 

5.3 Conclusion and future work 
The key message of this dissertation is clear: Communication costs are of major 
importance on current and even more future SoCs. The fact that cores and their 
caches run many times faster than their local busses makes I/O operations 
significantly more expensive compared to simple CPU operations like arithmetic 
operations. Hardware acceleration is thus getting increasingly difficult to achieve and 
can be beneficial only with accelerators with large granularity. These cores impose a 
large level of control functionality and also have significantly large development cost. 
Obviously this is not what hardware/software co-design promises. C to RTL 
compilation tools may shorten design cycles by transforming the high-level 
behavioural specifications on the form of C functions to hardware descriptions. The 
first generation of these tools may produce significantly sub-optimal designs in terms 
of performance and area but the shorter development cycle may make industry adopt 
these tools rapidly at least for producing initial designs that may be further optimized 
manually. 
 
The other viable solution for hardware acceleration is on very fine granularity by 
customizing processors’ instruction set. Realizing the problems of coarse grained 
acceleration Xilinx added another interface on the Virtex 4 and latter devices, the 
Auxiliary Processor Unit (APU) controller which interfaces directly the CPU pipeline. 
By using it the designer can extend the instruction set of the PowerPC by creating 
application specific instructions. The bandwidth provided by the APU controller is 
much higher than the processor itself transferring up to 16 bytes of data in each 
instruction. This is a very promising interface and may offer new opportunities for 
reconfigurability as well because small instruction-level operators feature smaller 
bitstreams and thus shorter reconfiguration time. The main problem with this 
interface may be in its software-side integration because most of the compilers 
assume a fixed instruction set. Interfacing CPU’s pipeline may also make debugging 
difficult and may impose a complex hardware-side interface. It is interesting to 
explore practically this interface and explore its capabilities and is certainly one of the 
subjects of our future work. 
 
Another very important subject for future work is the increase on the performance 
between hardware and software interface. We saw that despite the fact that 
hardware computation completes rapidly, the communication overhead is the 
bottleneck that makes hardware implementation less efficient than software 
implementation. Given that we use the fastest bus available and many optimization 
techniques have been applied in our source code we should consider current 
implementation as very good. There are still a few more hardware/software interfaces 
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that can be evaluated and might give better results. A memory-like interface for the 
Service Provider might enable the use of the burst mode of the CoreConnect bus 
between the cache and the component. The implementation may be complex and 
performance improvements are not guaranteed but it is worth exploring. Another 
possibility is using the Direct Memory Access (DMA) mechanism and especially on 
the scattered mode provided on the latest XPS (8.2i). This will release the processor 
from the load of transferring data to the component and is well supported by Linux 
(see Chapter 15 in [107]). Using DMA will probably accelerate very large data 
transfers but it won’t provide acceleration on most other cases which are more 
frequent. Perhaps Xilinx’s Core Services implementation should be extended to 
employ transparently different communication techniques depending on the amount 
of data transfer required by each Service. Another issue that could be explored is 
Linux driver to application interface. Now reads/writes on character devices are being 
used for communication with Service Providers. Network and block driver interfaces 
could also be explored as well as the ioctl interface that reduces the number of 
required system calls to one instead of two per service request. 
 
At higher level an implementation of Core Services on a NoC platform would provide 
interesting insights both on NoCs and Core Services. Core Services define one of the 
first protocols that aim on NoCs and it is interesting to verify that the approach taken 
actually fits well current NoC implementations. It is also interesting to see how 
various NoC characteristics such as connection setup and round-trip time affect the 
performance of the protocol. By studying communication characteristics like for 
example frequency of requests and packet sizes of Core Services one can set 
realistic requirements on the design of a NoC implementation. The traffic that Core 
Services produce is not an estimation but the actual traffic that will be required from 
the NoC. 
 
In terms of reconfigurability there are not a lot of issues that need to be verified. 
When tools will allow easy creation of partial bitstreams and perhaps reconfiguration 
time becomes shorter (Virtex 4 supports 8 times faster reconfiguration [110]) it will be 
straightforward to use Core Services with reconfigurable components. The emulation 
of reconfiguration that we use is equivalent at functional level with true 
reconfiguration and thus verifying it is interesting just as a proof of concept. In 
appendix A.2 we give many useful references that will help such an attempt. 
 
Further exploration of the applications of Core Services and usability of the Service 
Builder platform generator is very important. The limited set of applications that we 
implemented is sufficient to prove that Core Services work but may not have 
revealed us the full set of requirements that applications have. The fact that the port 
of the two applications and the design of the framework were performed by the same 
person may have made the framework slightly over-designed for those applications. 
The original codes for the applications came from different sources and both coding 
styles and computational requirements are quite diverse thus the framework is quite 
general. Porting more applications will undoubtedly reveal interesting extensions to 
the Core Services framework. 
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Appendix A. Overview of Xilinx’s hardware, tools and 
design flows 

A.1 Hardware and tools overview 
Xilinx provides us with a set of tools and flows to work with its reconfigurable 
hardware. 
 

 
 

Figure 52. Architecture overview of Virtex II Pro FPGA 
 
The family of FPGAs that we work with is the Xilinx Virtex II Pro FPGAs (see Figure 
52 taken from [111]) that include plenty of resources, including (in XC2VP30) two 
PowerPC hard cores, 20000 reconfigurable slices, 140 embedded multipliers and 
Block RAMs, 8 Digital Clock Management Units and more than 600 I/Os. Large 
designs can fit in these FPGAs and hardware software co-design techniques can be 
applied because PowerPC’s can run software and reconfigurable logic can 
implement hardware functions. 
 
We use the Xilinx University Program Virtex-II Pro Development System that 
provides us a lot of useful external peripherals (see Figure 53 taken from [112]). The 
ones that we use are the Compact Flash controller in order to load configuration and 
boot Linux from a Compact Flash memory, the RS232 ports to communicate with a 
host computer and the DDRAM controller that provides us 256 Mb of external 
memory. OF course, we implicitly use the 100MHz System Clock and the JTAG 
interface for configuration.  
 
These powerful hardware resources need flexible software in order to reveal their 
strengths and this is the case with Xilinx’s software tools. The ISE development 
environment (see Figure 54) is ideal for small designs and component creation and 
validation because it can easily run Xilinx’s traditional design flow that includes 
synthesis, translation, mapping, place and route and load into the FPGA. For 
platform-level applications Xilinx provides the advanced development environment 
Xilinx Platform Studio (XPS) [113] as we can see in Figure 55. With this complete 
systems can be created using PowerPC/Microblaze processors, Xilinx’s IP cores and 
custom peripherals.  
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Figure 53. System Core Diagram for the Development Board 
 

 
 

Figure 54. Xilinx ISE development environment 
 
Software development of simple embedded applications is also supported within the 
same IDE with the PowerPC/Microblaze compilers, debuggers, simulators, in circuit 
debuggers and most importantly the OS and libraries collection (see [114]). XPS 
builds the platform which is then implemented with Xilinx’s traditional design flow. 
The only difference is that after placement and routing, an initialization of the Block 
RAMs with the compiled source code takes place. XPS allows a certain degree of 
flexibility. Hardware modules can be imported and exported from other tools including 
ISE and Synplicity [115]. Software can be written using external IDEs like Eclipse 
which is installed by default with XPS. A complete overview of XPS’s features is 
given in its help and documentation [116]. 
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Figure 55. Xilinx XPS development environment 
 

A.2 Dynamic reconfiguration flow 
Unfortunately dynamic reconfiguration flow is not supported by current tools and 
must be done manually by modifying and running batch files. It is described in detail 
in an application note [117] and is based to a restricted subset of the modular design 
flow described in [118]. Each module is being synthesized, mapped, placed and 
routed independently but is forced to fit into certain slice columns. Then the 
components of the system are being merged at bitstream level. Much help is 
provided by various tutorials like [119, 120]. 
 
If one wants to apply the dynamic reconfiguration flow on platforms generated with 
Xilinx’s XPS there are several large problems. First of all the I/O pins used by the 
system necessarily span the whole FPGA’s area on most development boards. The 
input bitstream has to be fetched from the RAM whose I/Os are usually in the left 
side and is written to the ICAP device which lies in the right side. This means that we 
need wires running over the width of the design that must be active during 
reconfiguration. Xilinx states explicitly that all the connections that span through a 
reconfigurable slice should be considered inactive during reconfiguration. Hopefully 
this isn’t true if one uses hard macros and significantly modified flow as 
demonstrated in [121]. The second problem is that XPS designs can’t fit directly into 
the dynamic reconfiguration flow because they use components like the DCM module 
which lies outside reconfigurable slices’ area. Hopefully there is a workaround for this 
case as well as described in detail at [122]. Note that both these papers were written 
in 2006 although the tools are available for more than 5 years. 
 
We went through the dynamic reconfiguration flow ourselves. Simple designs were 
easily and successfully made using bus macros. We found difficulties on constraining 
more complex designs into slice columns. Wires were running outside our predefined 
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borders or routing tools were terminating telling that the design is impossible to be 
mapped or routed. We moved to XPS project level creating a PowerPC application. 
Then we used a simple reconfiguration bitstream created with the “simple” (second) 
from the two design flows described in [117] by modifying manually the design with 
Xilinx FPGA editor. The bitstream (.bit file) was converted to a variable for use within 
software by using the script files found on the Xilinx’s application note [123]. 
Reconfiguration was realized by using the ICAP module and the HWICAP driver 
documented in [124]. We achieved dynamic reconfiguration successfully with this 
stream on a running PowerPC system. The code can be found in Appendix C.1 and 
uses only three API calls for reconfiguration. It must be noted that connections 
between RAM and PowerPC were running over the slice under configuration and 
were used during reconfiguration and the design worked perfectly. 
 
A Linux Device Driver for HWICAP doesn’t exist yet but Xilinx promises that will have 
one soon and very well integrated into the Linux Operating System [110]. We used 
our successfully tested version of HWICAP driver to our Linux Device Driver. We did 
not create real reconfiguration streams because in that case we would have to 
devote considerable but most importantly unpredictable amount of time dealing with 
very low-level problems which are out of the subject of our work. We used instead a 
Service Provider able to provide two Core Services that is being considered as 
reconfigurable from the Service Broker. We simulate reconfiguration by including a 
reconfiguration delay during which the component is unavailable. This simulates 
accurately the process of reconfiguration with the only exception of not including the 
bandwidth required for transferring the reconfiguration stream from RAM to ICAP. 
HWICAP is an OPB peripheral and thus slow enough to make this bandwidth 
negligible. 

A.3 Montavista Linux 
MontaVista Linux is provided by MontaVista. It’s a port of Linux for the Xilinx ml310 
board. With the precious help of Jamie [125] we can create a gcc cross compiler for 
PowerPC, download the source code for this Linux, compile it and load it along with a 
complete file system to the XUP board that we have. She also shows how to 
implement some simple device drivers for this Linux [126]. We need and use Linux 
because it provides us with a basic level of functionality like file and task 
management in order to execute our demonstration applications. Because it’s a 
multitasking operating system, we can see the effects of running multiple instances of 
our applications that reveal the functionality of the Service Broker and reconfiguration 
functionality. 
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Appendix B. Hardware entities 

B.1 Service Interface  
package array_types is 
 -- CORE TYPE DEFINITIONS 
 type word_array_t is array (integer range <>) of 
std_logic_vector(31 downto 0); 
 type VARIABLE_LENGTHS_t is array(integer range <>) of integer; 
 type SERVICE_PROVIDER_DATA_t is record 
  SERVICE_ID: integer; 
  SERVICE_OUT_PARAMS: integer; 
  SERVICE_FAULT_TOLERANCE: boolean; 
 end record; 
 type SERVICE_PROVIDERS_DATA_t is array(integer range <>) of 
SERVICE_PROVIDER_DATA_t; 
 type SERVICE_PROVIDER_VARS_t is array(integer range <>, integer 
range <>) of integer; 
 
 -- CORE CONSTANT DEFINITIONS 
 constant SERVICES_COUNT:integer := 2; 
 constant MAX_INPUT_VARS:integer := 4; 
 constant MAX_OUTPUT_VARS:integer := 3; 
 constant MAX_VAR_WITH_FT: integer := 2; 
 
 constant VARIABLE_LENGTHS_IN : VARIABLE_LENGTHS_t(0 to 
MAX_INPUT_VARS-1) := (16, 16, 16, 16); 
 constant VARIABLE_LENGTHS_OUT : VARIABLE_LENGTHS_t(0 to 
MAX_OUTPUT_VARS-1) := (16, 16, 16); 
 
 constant SERVICE_PROVIDERS_DATA: SERVICE_PROVIDERS_DATA_t(0 to 
SERVICES_COUNT-1) := ( 
  (SERVICE_ID=>0, SERVICE_OUT_PARAMS=>2, 
SERVICE_FAULT_TOLERANCE=>TRUE), 
  (SERVICE_ID=>1, SERVICE_OUT_PARAMS=>3, 
SERVICE_FAULT_TOLERANCE=>FALSE) 
 ); 
 constant SERVICE_PROVIDER_VARS: SERVICE_PROVIDER_VARS_t(0 to 
SERVICES_COUNT-1, 0 to MAX_OUTPUT_VARS-1) := ( 
  (16, 16, 0), 
  (16, 16, 16) 
 ); 
 
 function GET_OUT_PARAMS(sid: integer) return integer; 
 function GET_VAR_LENGTH(sid: integer; var: integer) return 
integer; 
 function GET_FAULT_TOLERANCE(sid: integer) return boolean; 
end array_types; 

B.2 Service Interface  
 
entity service_interface is 
 Port ( 
  -- bus interface 

      clk : in std_logic; 
       reset : in std_logic; 
  SBSR_out : out std_logic_vector(31 downto 0); 
  SBDR_out : out std_logic_vector(31 downto 0); 
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  SBDR_in : in std_logic_vector(31 downto 0); 
      SBDR_re : in std_logic; 
      SBDR_ac : out std_logic; 
      SBDR_we : in std_logic; 

  -- service interface 
  srv_init: out std_logic; 
  srv_go: out std_logic; 
  srv_done: in std_logic; 
  srv_data_out: out std_logic_vector(31 downto 0); 
  srv_data_in: in std_logic_vector(31 downto 0); 
  srv_data_in_ac: in std_logic; 
  srv_current_variable: out std_logic_vector(7 downto 0); 
  srv_current_word: out std_logic_vector(31 downto 0); 
  srv_return_parameters: in std_logic_vector(7 downto 0); 
  srv_var_size: in std_logic_vector(31 downto 0); 
  srv_var_size_ac: in std_logic; 
  srv_csum: in std_logic_vector(31 downto 0); 
  srv_csum_request: out std_logic; 
  srv_csum_ac: in std_logic; 
  srv_service_id: out std_logic_vector(15 downto 0); 
  srv_variable_valid: out std_logic 
 ); 
end service_interface; 
 

B.3 Default Variable Manager 
 
entity default_variable_manager is 
 port ( 
  -- Global 
      clk : in std_logic; 
      reset : in std_logic; 
  -- Communication with the interface 
  init: in std_logic; 
  go: in std_logic; 
  done: out std_logic; 
  data_out: in std_logic_vector(31 downto 0); 
  data_in: out std_logic_vector(31 downto 0); 
  data_in_ac: out std_logic; 
  current_variable: in std_logic_vector(7 downto 0); 
  current_word: in std_logic_vector(31 downto 0); 
  return_parameters: out std_logic_vector(7 downto 0); 
  var_size: out std_logic_vector(31 downto 0); 
  var_size_ac: out std_logic; 
  csum: out std_logic_vector(31 downto 0); 
  csum_request: in std_logic; 
  csum_ac: out std_logic; 
  service_id: in std_logic_vector(15 downto 0); 
  variable_valid: in std_logic; 
  -- Communication with the services 
  proc_go: out std_logic; 
  proc_done: in std_logic; 
  proc_service_id: out std_logic_vector(15 downto 0); 
  proc_in_word: in word_array_t(0 to MAX_INPUT_VARS-1); 
  proc_in_values: out word_array_t(0 to MAX_INPUT_VARS-1); 
  proc_out_word: in word_array_t(0 to MAX_OUTPUT_VARS-1); 
  proc_out_we: in std_logic_vector(0 to MAX_OUTPUT_VARS-1); 
  proc_out_values: in word_array_t(0 to MAX_OUTPUT_VARS-1); 
  proc_out_crc32: in word_array_t(0 to MAX_VAR_WITH_FT-1) 
 ); 
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end default_variable_manager; 
 

B.4 Default Services 
 
entity default_services is 
 port ( 
  clk: in std_logic; 
  reset: in std_logic; 
  go: in std_logic; 
  done: out std_logic; 
  service_id: in std_logic_vector(15 downto 0); 
  in_word: out word_array_t(0 to MAX_INPUT_VARS-1); 
  in_values: in word_array_t(0 to MAX_INPUT_VARS-1); 
  out_word: out word_array_t(0 to MAX_OUTPUT_VARS-1); 
  out_we: out std_logic_vector(0 to MAX_OUTPUT_VARS-1); 
  out_values: out word_array_t(0 to MAX_OUTPUT_VARS-1); 
  out_crc32: out word_array_t(0 to MAX_VAR_WITH_FT-1) 
 ); 
end entity; 

Appendix C. Source Code 

C.1 Reconfiguration through HWICAP  
 
#include "xparameters.h" 
#include "xgpio_l.h" 
#include "xhwicap.h" 
 
unsigned char stream[5948] = {0, 9, 15, 240, 15, 240, 15, 240, 15, 
240, 0, 0, 1, 97, 0, 13, 115, 121, 115, …}; 
 
unsigned char strea2[2620] = {0, 9, 15, 240, 15, 240, 15, 240, 15, 
240, 0, 0, 1, 97, 0, 11, 115, 121, 115, …}; 
 
int main (void) { 
   int i=0, j=0; volatile int delay=0; int numTimes = 5; char c; 
   XHwIcap hIC; 
 
   XStatus status = XHwIcap_Initialize( 
      &hIC, 
      XPAR_OPB_HWICAP_0_DEVICE_ID, 
      XHI_XC2VP30 
   ); 
   if (status != XST_SUCCESS) { 
      xil_printf("ICAP Init failed %x status %x\r\n", 
         hIC.DeviceIdCode, status); 
      exit(1); 
   } 
 
   XHwIcap_CommandDesync(&hIC); 
 
   while (1) { 
   putchar(c = getchar()); 
   if (c == '1' | c == '2') { 
     unsigned char * ucPtr = c == '1' ? stream : strea2; 
     int size = c == '1' ? 1487 : 655; 
     switch (XHwIcap_SetConfiguration(&hIC, ucPtr, size)) { 
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      case XST_SUCCESS: 
       xil_printf("XST_SUCCESS\r\n"); 
    break; 
      case XST_BUFFER_TOO_SMALL: 
       xil_printf("XST BUFFER TOO SMALL\r\n"); 
    break; 
      case XST_INVALID_PARAM: 
       xil_printf("XST INVALID PARAM\r\n"); 
    break; 
     } 
   } 
 
   XGpio_mSetDataDirection(XPAR_LEDS_8BIT_BASEADDR, 
      1, 0x00000000);       
    
      j = 1; 
      for(i=0; i<8; i++) { 
         XGpio_mSetDataReg(XPAR_LEDS_8BIT_BASEADDR, 1, j); 
         j = j << 1; 
         for (delay=0; delay<100000; delay++); 
      } 
      j = 1; 
      j = ~j; 
      for(i=0; i<8; i++) { 
         XGpio_mSetDataReg(XPAR_LEDS_8BIT_BASEADDR, 1, j); 
         j = j << 1; 
         for (delay=0; delay<100000; delay++); 
      } 
   } 
   return 0; 
} 

C.2 rijndaelEncrypt AES encryption function 
 
int rijndaelEncrypt (word8 a[16], word8 b[16], word8 
rk[MAXROUNDS+1][4][4]) 
{ 
 /* Encryption of one block.  
  */ 
 int r; 
   word8 temp[4][4]; 
 
    *((word32*)temp[0]) = *((word32*)a) ^ *((word32*)rk[0][0]); 
    *((word32*)temp[1]) = *((word32*)(a+4)) ^ *((word32*)rk[0][1]); 
    *((word32*)temp[2]) = *((word32*)(a+8)) ^ *((word32*)rk[0][2]); 
    *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]); 
    *((word32*)b) = *((word32*)T1[temp[0][0]]) 
           ^ *((word32*)T2[temp[1][1]]) 
           ^ *((word32*)T3[temp[2][2]])  
           ^ *((word32*)T4[temp[3][3]]); 
    *((word32*)(b+4)) = *((word32*)T1[temp[1][0]]) 
           ^ *((word32*)T2[temp[2][1]]) 
           ^ *((word32*)T3[temp[3][2]])  
           ^ *((word32*)T4[temp[0][3]]); 
    *((word32*)(b+8)) = *((word32*)T1[temp[2][0]]) 
           ^ *((word32*)T2[temp[3][1]]) 
           ^ *((word32*)T3[temp[0][2]])  
           ^ *((word32*)T4[temp[1][3]]); 
    *((word32*)(b+12)) = *((word32*)T1[temp[3][0]]) 
           ^ *((word32*)T2[temp[0][1]]) 



 70

           ^ *((word32*)T3[temp[1][2]])  
           ^ *((word32*)T4[temp[2][3]]); 
   for(r = 1; r < ROUNDS-1; r++) { 
  *((word32*)temp[0]) = *((word32*)b) ^ 
*((word32*)rk[r][0]); 
  *((word32*)temp[1]) = *((word32*)(b+4)) ^ 
*((word32*)rk[r][1]); 
  *((word32*)temp[2]) = *((word32*)(b+8)) ^ 
*((word32*)rk[r][2]); 
  *((word32*)temp[3]) = *((word32*)(b+12)) ^ 
*((word32*)rk[r][3]); 
   *((word32*)b) = *((word32*)T1[temp[0][0]]) 
           ^ *((word32*)T2[temp[1][1]]) 
           ^ *((word32*)T3[temp[2][2]])  
           ^ *((word32*)T4[temp[3][3]]); 
   *((word32*)(b+4)) = *((word32*)T1[temp[1][0]]) 
           ^ *((word32*)T2[temp[2][1]]) 
           ^ *((word32*)T3[temp[3][2]])  
           ^ *((word32*)T4[temp[0][3]]); 
   *((word32*)(b+8)) = *((word32*)T1[temp[2][0]]) 
           ^ *((word32*)T2[temp[3][1]]) 
           ^ *((word32*)T3[temp[0][2]])  
           ^ *((word32*)T4[temp[1][3]]); 
   *((word32*)(b+12)) = *((word32*)T1[temp[3][0]]) 
           ^ *((word32*)T2[temp[0][1]]) 
           ^ *((word32*)T3[temp[1][2]])  
           ^ *((word32*)T4[temp[2][3]]); 
   } 
   /* last round is special */    
 *((word32*)temp[0]) = *((word32*)b) ^ *((word32*)rk[ROUNDS-
1][0]); 
 *((word32*)temp[1]) = *((word32*)(b+4)) ^ *((word32*)rk[ROUNDS-
1][1]); 
 *((word32*)temp[2]) = *((word32*)(b+8)) ^ *((word32*)rk[ROUNDS-
1][2]); 
 *((word32*)temp[3]) = *((word32*)(b+12)) ^ 
*((word32*)rk[ROUNDS-1][3]); 
   b[0] = T1[temp[0][0]][1]; 
   b[1] = T1[temp[1][1]][1]; 
   b[2] = T1[temp[2][2]][1];  
   b[3] = T1[temp[3][3]][1]; 
   b[4] = T1[temp[1][0]][1]; 
   b[5] = T1[temp[2][1]][1]; 
   b[6] = T1[temp[3][2]][1];  
   b[7] = T1[temp[0][3]][1]; 
   b[8] = T1[temp[2][0]][1]; 
   b[9] = T1[temp[3][1]][1]; 
   b[10] = T1[temp[0][2]][1];  
   b[11] = T1[temp[1][3]][1]; 
   b[12] = T1[temp[3][0]][1]; 
   b[13] = T1[temp[0][1]][1]; 
   b[14] = T1[temp[1][2]][1];  
   b[15] = T1[temp[2][3]][1]; 
 *((word32*)b) ^= *((word32*)rk[ROUNDS][0]); 
 *((word32*)(b+4)) ^= *((word32*)rk[ROUNDS][1]); 
 *((word32*)(b+8)) ^= *((word32*)rk[ROUNDS][2]); 
 *((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]); 
 
 return 0; 
} 
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C.3 synth_full mp3 decoding function 
 
static 
void synth_full(struct mad_synth *synth, struct mad_frame const 
*frame, 
  unsigned int nch, unsigned int ns) 
{ 
  unsigned int phase, ch, s, sb, pe, po; 
  mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8]; 
  mad_fixed_t const (*sbsample)[36][32]; 
  register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8]; 
  register mad_fixed_t const (*Dptr)[32], *ptr; 
  register mad_fixed64hi_t hi; 
  register mad_fixed64lo_t lo; 
 
  for (ch = 0; ch < nch; ++ch) { 
    sbsample = &frame->sbsample[ch]; 
    filter   = &synth->filter[ch]; 
    phase    = synth->phase; 
    pcm1     = synth->pcm.samples[ch]; 
 
    for (s = 0; s < ns; ++s) { 
      dct32((*sbsample)[s], phase >> 1, 
     (*filter)[0][phase & 1], (*filter)[1][phase & 1]); 
 
      pe = phase & ~1; 
      po = ((phase - 1) & 0xf) | 1; 
 
      /* calculate 32 samples */ 
 
      fe = &(*filter)[0][ phase & 1][0]; 
      fx = &(*filter)[0][~phase & 1][0]; 
      fo = &(*filter)[1][~phase & 1][0]; 
 
      Dptr = &D[0]; 
 
      ptr = *Dptr + po; 
      ML0(hi, lo, (*fx)[0], ptr[ 0]); 
      MLA(hi, lo, (*fx)[1], ptr[14]); 
      MLA(hi, lo, (*fx)[2], ptr[12]); 
      MLA(hi, lo, (*fx)[3], ptr[10]); 
      MLA(hi, lo, (*fx)[4], ptr[ 8]); 
      MLA(hi, lo, (*fx)[5], ptr[ 6]); 
      MLA(hi, lo, (*fx)[6], ptr[ 4]); 
      MLA(hi, lo, (*fx)[7], ptr[ 2]); 
      MLN(hi, lo); 
 
      ptr = *Dptr + pe; 
      MLA(hi, lo, (*fe)[0], ptr[ 0]); 
      MLA(hi, lo, (*fe)[1], ptr[14]); 
      MLA(hi, lo, (*fe)[2], ptr[12]); 
      MLA(hi, lo, (*fe)[3], ptr[10]); 
      MLA(hi, lo, (*fe)[4], ptr[ 8]); 
      MLA(hi, lo, (*fe)[5], ptr[ 6]); 
      MLA(hi, lo, (*fe)[6], ptr[ 4]); 
      MLA(hi, lo, (*fe)[7], ptr[ 2]); 
 
      *pcm1++ = SHIFT(MLZ(hi, lo)); 
 
      pcm2 = pcm1 + 30; 



 72

 
      for (sb = 1; sb < 16; ++sb) { 
 ++fe; 
 ++Dptr; 
 
 /* D[32 - sb][i] == -D[sb][31 - i] */ 
 
 ptr = *Dptr + po; 
 ML0(hi, lo, (*fo)[0], ptr[ 0]); 
 MLA(hi, lo, (*fo)[1], ptr[14]); 
 MLA(hi, lo, (*fo)[2], ptr[12]); 
 MLA(hi, lo, (*fo)[3], ptr[10]); 
 MLA(hi, lo, (*fo)[4], ptr[ 8]); 
 MLA(hi, lo, (*fo)[5], ptr[ 6]); 
 MLA(hi, lo, (*fo)[6], ptr[ 4]); 
 MLA(hi, lo, (*fo)[7], ptr[ 2]); 
 MLN(hi, lo); 
 
 ptr = *Dptr + pe; 
 MLA(hi, lo, (*fe)[7], ptr[ 2]); 
 MLA(hi, lo, (*fe)[6], ptr[ 4]); 
 MLA(hi, lo, (*fe)[5], ptr[ 6]); 
 MLA(hi, lo, (*fe)[4], ptr[ 8]); 
 MLA(hi, lo, (*fe)[3], ptr[10]); 
 MLA(hi, lo, (*fe)[2], ptr[12]); 
 MLA(hi, lo, (*fe)[1], ptr[14]); 
 MLA(hi, lo, (*fe)[0], ptr[ 0]); 
 
 *pcm1++ = SHIFT(MLZ(hi, lo)); 
 
 ptr = *Dptr - pe; 
 ML0(hi, lo, (*fe)[0], ptr[31 - 16]); 
 MLA(hi, lo, (*fe)[1], ptr[31 - 14]); 
 MLA(hi, lo, (*fe)[2], ptr[31 - 12]); 
 MLA(hi, lo, (*fe)[3], ptr[31 - 10]); 
 MLA(hi, lo, (*fe)[4], ptr[31 -  8]); 
 MLA(hi, lo, (*fe)[5], ptr[31 -  6]); 
 MLA(hi, lo, (*fe)[6], ptr[31 -  4]); 
 MLA(hi, lo, (*fe)[7], ptr[31 -  2]); 
 
 ptr = *Dptr - po; 
 MLA(hi, lo, (*fo)[7], ptr[31 -  2]); 
 MLA(hi, lo, (*fo)[6], ptr[31 -  4]); 
 MLA(hi, lo, (*fo)[5], ptr[31 -  6]); 
 MLA(hi, lo, (*fo)[4], ptr[31 -  8]); 
 MLA(hi, lo, (*fo)[3], ptr[31 - 10]); 
 MLA(hi, lo, (*fo)[2], ptr[31 - 12]); 
 MLA(hi, lo, (*fo)[1], ptr[31 - 14]); 
 MLA(hi, lo, (*fo)[0], ptr[31 - 16]); 
 
 *pcm2-- = SHIFT(MLZ(hi, lo)); 
 
 ++fo; 
      } 
 
      ++Dptr; 
 
      ptr = *Dptr + po; 
      ML0(hi, lo, (*fo)[0], ptr[ 0]); 
      MLA(hi, lo, (*fo)[1], ptr[14]); 
      MLA(hi, lo, (*fo)[2], ptr[12]); 
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      MLA(hi, lo, (*fo)[3], ptr[10]); 
      MLA(hi, lo, (*fo)[4], ptr[ 8]); 
      MLA(hi, lo, (*fo)[5], ptr[ 6]); 
      MLA(hi, lo, (*fo)[6], ptr[ 4]); 
      MLA(hi, lo, (*fo)[7], ptr[ 2]); 
 
      *pcm1 = SHIFT(-MLZ(hi, lo)); 
      pcm1 += 16; 
 
      phase = (phase + 1) % 16; 
    } 
  } 
} 
# endif 
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Appendix D. Various topics 

D.1 The checksum 
 
When we talk about checksums, the first thing that comes to mind is LFSR. 
Unfortunately this robust solution has expensive software implementation. A 32 bit 
LFSR checksum can be done with the following routine: 
 
output = input + (output << 1) + ( \ 

(output & (1<<1) ? 1 : 0) ^  \ 
(output & (1<<5) ? 1 : 0) ^  \ 
(output & (1<<6) ? 1 : 0) ^  \ 
(output & (1<<31) ? 1 : 0)   \ 

); 
 
We can see that it includes a lot of unnecessary ‘if’, 32-bit shift,  ‘and’ and xor 
operations. With some profiling we calculate that it takes almost 40 clock cycles per 
iteration for Pentium architecture. In hardware, its implementation is straightforward. 
 
Instead of LFSR we use the following compression method to calculate checksum: 
 
output += input; 
output = (output <<1) + (output & 0x80000000?1:0); 
 
This takes 12 clock cycles per iteration for Pentium, more than three times faster 
(both compilations used –O3). In hardware this is nothing more than an adder and a 
rotating shift register. 
 
acc <= output + input; 
process(clk) begin 

if (rising_edge(clk)) then 
  output <= acc(30 downto 0) & acc(31); 
 end if; 
end process; 
 
Obviously it’s fast and it consumes very few resources. 
 

D.2 I/O operation efficiency 
 
On an standalone XPS software project (no Linux) we created a program that was 
making 10.000 reads and writes on a register in order to benchmark their 
performance and choose the best for our implementation. 
 
By calling the code from the original XIo_Out32 and XIo_In32 functions we got the 
following profiles: 
 
> Writes: 1680039 clock cycles => 168 c/write 
> Reads: 1530060 clock cycles => 153 c/write 
 
After enabling the instruction cache we faced a 268% improvement on reads and 
466% improvement on writes. 
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> Writes: 360091 clock cycles => 36 c/write 
> Reads: 570089 clock cycles => 57 c/write 
 
After enabling and the data cache we faced another 172% improvement on reads 
which gave us equal read and write times. 
 
> Writes: 360046 clock cycles => 36 c/write 
> Reads: 330062 clock cycles => 33 c/write 
 
An assembly instruction (eieio) was used to put a barrier that ensures that all the I/O 
opretions complete in sequence. This was executed after our I/O operation making 
the whole implementation slower because on an actual run the following was 
happening: 
 
stw %0, 0(%1); eieio – Waits 
-- loop code 
stw %0, 0(%1); eieio – Waits again 
 
We modified the code slightly by putting the eieio instruction before the I/O operation. 
This way the branch overhead was coming at free under the I/O synchronization 
operation: 
 
eieio; stw %0, 0(%1) 
-- loop code doesn’t provide an overhead 
eieio ; stw %0, 0(%1) – Waits again 
 
After changing the order of write and eieio in batch_write (10% improvement). 
 
> Writes: 300047 clock cycles => 30 c/write 
> Reads: 300050 clock cycles => 30 c/write 
 
Further loop unrolling results, inlining assembly and other tricks didn’t provide any 
further acceleration. Because the CPU was running on 300MHz the numbers above 
actually mean that a single read/write completes in 10 bus clock cycles. 
 

D.3 XPS project debug and time traces 
 
Testing AES_ACCELERATOR_0: AES_BARE 
sending: 555, computing: 118, receiving: 70, total: 743 
var[1] = {1CB0CBD9, C9304FA8, AC711D92, 7CE2E30F} 
checksum = {06084922} 
 
Testing AES_ACCELERATOR_0: AES_FULL 
sending: 427, computing: 118, receiving: 168, total: 713 
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308} 
checksum = {06084922} 
 
Testing COMB_ACCELERATOR_0: AES_FULL 
sending: 427, computing: 118, receiving: 153, total: 698 
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308} 
checksum = {06084922} 
 
Testing COMB_ACCELERATOR_0: AES_FULL 
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sending: 427, computing: 118, receiving: 153, total: 698 
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308} 
checksum = {06084922} 
 
Testing software AES process 
time: 1824 
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308} 
checksum = {06084922} 
 
Testing MP3_ACCELERATOR_0: MP3_NO 
sending: 215, computing: 34, receiving: 122, total: 371 
var[1] = {00009A3A, FFFF5889} 
 
Testing COMB_ACCELERATOR_0: MP3_NO 
sending: 171, computing: 34, receiving: 101, total: 306 
var[1] = {00009A3A, FFFF5889} 
 
Testing COMB_ACCELERATOR_0: MP3_NO 
sending: 171, computing: 34, receiving: 101, total: 306 
var[1] = {00009A3A, FFFF5889} 
 
Testing software MP3 process 
time: 1056 
var[1] = {00009A3A, FFFF5889} 

D.4 A quick tutorial in Core Services 
 
We provide this quick tutorial in order to help you get started with Core Services. 
 
At the beginning you should start the Service Builder application by clicking on the 
appropriate bat file. 
 

 
 
Service Builder’s user interface initializes and from here you can customize Core 
Services’ platform by using its menus and dialogs. Useful information about 
performance can be found in the status bar. 
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Once the customization is complete and you are satisfied with the platform you select 
Generate from the Platform menu. It asks you for a folder to place the files and Core 
Service’s files get generated automatically. 
 

 
 
You can see in the following figure the directory hierarchy that gets generated. A 
directory gets generated for each accelerator on the pcores directory. All the software 
components lie in the “linux device driver and api” directory. Service Builder 
automatically saves a copy of the system configuration in that folder in order to be 
able to open it and find out what current configuration provides. 
 

 
 
Then hardware generation using XPS takes place. You can find a step-by-step video 
presentation on my web site lookfwd.doitforme.gr/projects on this subject. An 
overview is provided here. 
 
1. Create a new project by using Base System Builder. The project should represent 
your computational needs and also don’t occupy the whole FPGA area in order to 
leave space for accelerator’s hardware. You may need to consult Jamie’s page [125] 
to find details on a Base System that can run Linux. You may find that a Ethernet 
MAC is not necessary for simple experiments because it takes considerable time to 
synthesize. 
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2. Import each design from the pcores folder by using the Import Peripheral Wizard 
(Tools > Create/Import Peripheral). Use the “Add Library” command to resolve any 
library dependencies.  
3. Use Add/Edit Cores dialog (Project > Add/Edit Cores) to connect accelerating 
components to the system. Do the appropriate bus connections and Generate 
Addresses. 
4. Do the rest of the flow for hardware generation as described in Jamie’s page [125]. 
 
At the end of this process you will have in the implementation folder of your project a 
download.bit file that contains the bitstream for you application. Then you have to 
create the software by following the software generation flow described in Jamie’s 
page [125]. You generate a cross compiler for PowerPC and a MontaVista linux for 
the platform. 
 
Then you take the files from the “linux device driver and api” for cross compilation. 
The following Makefile was used for compiling our driver and might be found to be 
useful: 
 
 
KERNELDIR=/root/Desktop/cross/linuxppc_2_4_devel 
 
include $(KERNELDIR)/.config 
 
CC = powerpc-405-linux-gnu-gcc 
LD = powerpc-405-linux-gnu-ld 
CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \ 
    -I$(KERNELDIR)/arch/ppc \ 
    -O2 -Wall 
 
ifdef CONFIG_SMP 
  CFLAGS += -D__SMP__ -DSMP -Wall 
endif 
 
all: cs.o ioctltest 
 
ioctltest: ioctltest.c core_services.c core_services.h csdriver.h 
aesdefault.c mp3default.c  
 ${CC} -Wall -O ioctltest.c core_services.c aesdefault.c 
mp3default.c -o ioctltest 
csdriver.o:  csdriver.c reconf.c reconf.h csdriver.h low_level_io.h 
platform.h 
platform.o: platform.c platform.h 
 
cs.o: platform.o csdriver.o 
 $(LD) -r -o $@ platform.o csdriver.o 
 
 
clean: 
 rm -f csdriver.o ioctltest cs.o platform.o 
 
Inside core_services.h you can find macros that wrap the core services API and 
provide a plain function API for our Core Services. You can see in the following 
section these functions for our case: 
 
#define aesService(a,b,rk, redundancy) ({ \ 
unsigned int *aes_inargv[] = {a, rk}; \ 
unsigned int aes_inargc[] = {4, 44}; \ 
unsigned int *aes_outv[] = {b}; \ 
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unsigned int outargc[1]; \ 
 highLevelCallService(aesdefault, redundancy, AES_SERVICE, 2, 
aes_inargv, aes_inargc, aes_outv, outargc); \ 
}) 
 
#define mp3Service(parm, ret) ({ \ 
unsigned int *mp3_inargv[] = {parm}; \ 
unsigned int mp3_inargc[] = {17}; \ 
unsigned int *mp3_outv[] = [65]; \ 
unsigned int outargc[1]; \ 
 highLevelCallService(mp3default, 1, MP3_SERVICE, 1, mp3_inargv, 
mp3_inargc, mp3_outv, outargc); \ 
}) 
 
These can get called from within application code as simply as this: 
 
int rijndaelEncrypt (word8 a[16], word8 b[16], word8 
rk[MAXROUNDS+1][4][4]) { 
 aesService(a,b,rk, 2); 
} 
 
inarg[0] = phase << 5 | 0; 
memcpy(&inarg[1], fx, 32); 
memcpy(&inarg[9], fe, 32); 
mp3Service(inarg, mp3_outv0); 
*pcm1++ = mp3_outv0[0]; 
 
Don’t forget to include the Core Services’ header file: 
 
#include "core_services.h" 
 
Then you copy the compiled files to the compact flash and you can load the driver by 
typing insmod cs.o and create file entries to its processes by using makenod 
/dev/devX -c 254 0 
 
You may alternatively automate this process with a batch file like this (in our case we 
have three Service Providers) 
 
#!/bin/sh 
insmod cs.o 
mknod /dev/csbroker c 254 0 
mknod /dev/cs0 c 254 1 
mknod /dev/cs1 c 254 2 
mknod /dev/cs2 c 254 3 
 
Finally you can create performance logs on the Xilinx platform by using our 
“mthrough” utility to measure the throughput like this: 
 
cat 02-counterstrike-truth-trt.mp3 | ./aescrypt -k keyfile.txt -s 128 
| ./mthrough > /dev/null 2>> aes0.log & 
cat 02-counterstrike-truth-trt.mp3 | ./aescrypt -k keyfile.txt -s 128 
| ./mthrough > /dev/null 2>> aes1.log & 
cat 02-counterstrike-truth-trt.mp3 | ./aescrypt -k keyfile.txt -s 128 
| ./mthrough > /dev/null 2>> aes2.log & 
./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3 
2>> mp30.log & 
./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3 
2>> mp31.log & 
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./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3 
2>> mp32.log & 
./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3 
2>> mp33.log & 
 
Some other useful procedure: 
 
Compiling the minimad mp3 player under windows (cygwin) 
 
$ configure --disable-shared --enable-profiling 
$ make 
$ make minimad.exe 
$ gcc -Wall -march=i486 -g -O -fforce-mem -fforce-addr -fthread-jumps 
-fcse-follow-jumps -fcse-skip-blocks -fexpensive-optimizations -
fregmove -fschedule-insns2 -fstrength-reduce -o minimad.exe minimad.o 
version.o fixed.o bit.o timer.o stream.o frame.o synth.o decoder.o 
layer12.o layer3.o huffman.o 
 
In order to run applications like minimad on linux ppc you have to cross-compile it 
using the following instructions: 
 
./configure –disable-shared –enable-profiling --build=`config.guess` 
--target=powerpc-405-linux-gnu --host=powerpc-405-linux-gnu 
make && make minimad 
 
You may have to modify slightly the Makefiles in order to include core_service’ 
framework’s files. 
 
Using the cross compiled gprof: 
 
Powerpc-405-linux-gnu-pgrof minimad > log_ppc405.txt 
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Appendix E. Advanced implementation issues 
E.1 On networks-on-chip supporting multicasting 
The need to support multicasting is a nice feature for NoCs but there are not so many 
practical applications that seem to exploit it. With Core Services one can use it to 
gain a significant decrease of communication costs on Core Services that require 
fault tolerance. If a fault tolerance of n  redundant computations per computation is 
required and n  hardware accelerators are readily available, the total communication 
time on the service requester is decreased to almost 1 n  of the original. As we 
discussed in section 3.4 communication cost is not only considerable but can be 
significantly larger and much less deterministic than the computation cost. 
 
A recent work in multicasting on a mesh network with deadlock freedom is being 
presented on [127]. We will use their notions for our multicast implementation. It must 
be noted that there may be extensions to the Æthereal to support multicasting [128] 
by using scheduling algorithms from tiny-tera [129].  
 

 
 

Figure 56. Multicasting scheme of Core Services 
 
The service request phase (Phase I) is identical with the unicast NoC 
implementation. In service execute (Phase II) the service requester instead of 
passing the parameters to each service provider in sequence, as in the unicast case, 
it setups a group by using a packet with “multicast setup” PacketType. If a successful 
acknowledgment is received then the requester becomes a group master and can 
send data via the virtual multicast channel (see Figure 56). Then it sends the 
parameters to all the providers with a single multicast packet (PacketType: “multicast 
data”) via the dedicated multicast channel (identified by its MultiID). At the end of this 
transaction, a group release takes place, by sending an appropriate packet 
(PacketType: “multicast group release”). 
 
Obviously, this implementation of multicasting requires a significant overhead of 
establishing and the releasing the virtual channel. It gives considerable advantages 
only on big packets of parameters and increased number of computation 
redundancy. If more efficient implementation techniques arise, the use of multicasting 
can give a decrease to almost 1 n  on the total parameter passing communication 
cost and the associated energy. 
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E.2 Interfacing external networks: A case study 
A SoC using the Core Services methodology can also be extended to provide and/or 
consume services from off-chip networks either global like the internet or local on the 
same board/system. This can be done with special pieces of hardware, bridges, that 
interface all the aspects of the external network to the internal and vice versa. 
 
For example, we are going to see how a Core Service can invoke a web via a 
network interface. Suppose that we have a Core Service for an embedded GIS 
application that takes as parameters the latitude and longitude and returns the 
temperature at that position. This way the application can show temperature maps 
over a map. The first version of this product used static weather prediction based on 
a model of the weather, current date and a temperature sensor. Obviously this was 
quite inaccurate but the company decided to release it this way and improve it in 
future version if it received positive feedback. They did it by using a default software 
implementation running on the same processor as the application. 
 
The positive feedback actually came and it was decided to make the application 
more accurate by using data from the internet, if an internet connection is available. 
A processor with 802.11b wireless interface already existed on-chip from the first 
version to allow the user to get waypoints and tracking information and to provide 
software and map upgrades. 
 
In order to provide this upgrade, they have just to modify slightly the software of the 
system. These are the steps: 
 

1. The internet-enabled processor must run a process that checks if internet 
connection is available (probably it does it already) 

2. If internet connection is available it registers itself to the service broker as a 
provider of the Core Service. If not, then it un-registers itself. It must use an 
attractive performance parameter in order to outbalance the default 
implementation. 

3. When the processor receives such a service request, it wraps the latitude 
and longitude in a REST compliant request (see section Chapter 2. ) and 
sends it to a web service provider like weather.gov (www.weather.gov/xml). 

4. When it receives the response the processor parses it and retrieves the 
temperature information. Then it forms a response packet and sends it back 
to the Core Service request issuer. 
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Figure 57. External web service request example 
 
We can see the final process in Figure 57. Unarguably using Core Services makes 
the system much more flexible. There was no need to change the application 
software so backwards compatibility is being retained. By changing only platform’s 
firmware we achieved better accuracy. Another advantage is that the communication 
overhead and the performance are minimized effectively without explicit effort. The 
on-chip communication infrastructure is being loaded only with the light Core 
Services messaging and not with any heavyweight xml-http text transferring. All the 
web text-oriented operations are being performed in the bridge that is probably 
already optimized for web operations e.g. have better string processing support. 
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Appendix F. API documentation 
 
As you can see the low level and the high level API are easy to use and reflect 
directly Core Service’s mechanics. 

F.1 Low level API 
 
int getBroker(); 
 
This functionreturns a handle to the Service Broker. This handle can be used to get 
and return Service Providers’ for specific services. 
 
void returnBroker(int hBroker); 
 
This function clears the handle to the Service Broker and frees the reference. The 
reference is invalid after this function. 
 
int getServiceProviderHandler(int provider_id); 
 
This function creates a handler for a service provider. The handler is just for 
accelerating future references to it and it shouldn’t be used for services until 
requested explicitly with a call to the getServiceProviders function. 
 
void returnServiceProviderHandler(int sph); 
 
This function destroys a handler for a Service Provider. The handler is invalid and 
can’t get used after this function. 
 
int * initializeCSHandlers(int hBroker); 
 
This initializes handlers for all the Service Providers available on the system. These 
handlers are just for accelerating future references to it and shouldn’t be used for 
services until requested explicitly with a call to the getServiceProviders function. 
 
void releaseCSHandlers(int hBroker, int * csHandlers); 
 
This function releases handler for a Service Providers of initialized by 
initializeCSHandlers.  
 
int getNumberOfProviders(int hBroker); 
 
A utility function able to retrieve the number of Service Providers available on the 
system. 
 
void getServiceProviders(int hBroker, unsigned int sid, 
unsigned int redundancy, service_request_t * providers); 
 
This is the main function used for provider allocation. It takes describes the service 
ID and the required amount of redundancy for the system. After this call the hardware 
accelerators (Service Provider) are reserved by the process until explicitly freed with 
a call to returnServiceProviders. 
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void returnServiceProviders(int hBroker, service_request_t * 
providers); 
 
This function returns the Service Provider from the current process and makes them 
available for the other processes or processors. 
 
unsigned int callService( 
 unsigned int hProvider,  
 unsigned int sid, 
 unsigned int vars, 
 unsigned int **inargv, 
 unsigned int *inargc, 
 unsigned int **outargv, 
 unsigned int *outargc, 
 unsigned int ftmode, 
 unsigned int *checksums 
); 
 
With this function we call a Core Service on a given service provider. Service call’s 
parameters are passed and result parameters as well as checksums are being 
provided back. 
 
void printResults(unsigned int vars, unsigned int **outargv, 
unsigned int *outargc, unsigned int *checksums); 
 
This utility function can be used for printing easily the results of a Service Call. It is 
useful for debugging. 
 
Core Service’s IDs: 
 
A service ID is generated for each Core Service in the system. For our application 
these are: 
 
#define MP3_SERVICE 0 
#define AES_SERVICE 1 
 
Fault tolerance modes: 
 
#define FT_MODE_NO_FT 0 
#define FT_MODE_FT_FULL 1 
#define FT_MODE_FT_BARE 2 
 
Three fault tolerance mode constants are supported. FT_MODE_NO_FT is used 
when the hardware has no support for fault tolerance. FT_MODE_FT_FULL is used 
for using fault tolerance and returning the results and the checksums. 
FT_MODE_FT_BARE FULL is used for using fault tolerance and returning only 
checksums. 

F.2 High level API  
A function template_fun which provides the default software implementation is 
defined in the high level API in the following manner: 
 
typedef int (*template_fun)(unsigned int vars, unsigned int 
**inargv, unsigned int *inargc, unsigned int **outargv, 
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unsigned int *outargc, unsigned int ftmode, unsigned int 
*checksums); 
 
The function used to invoke a Core Service is the following.  
 
unsigned int highLevelCallService( 
 template_fun fun, 
 int redundancy,   
 unsigned int sid, 
 unsigned int vars, 
 unsigned int **inargv, 
 unsigned int *inargc, 
 unsigned int **outargv, 
 unsigned int *outargc 
); 
 
As we can see the default implementation is provided, the level of fault tolerance (up 
to 16) and the usual in and out parameters description. Checksums are not provided 
because they are used internally on this functions and fault tolerance is guaranteed. 
This function runs the whole process of allocating Service Builder, searching for 
available Service Providers and checking checsums to provide fault tolerance. 
 
On top of these function application dependent macros are being used to provide a 
function-level API. They initialize the arguments given to highLevelCallService 
according to platforms’ specification. In the case of AES service this has the following 
form: 
 
#define aesService(a,b,rk, redundancy) ({ \ 
unsigned int *aes_inargv[] = {a, rk}; \ 
unsigned int aes_inargc[] = {4, 44}; \ 
unsigned int *aes_outv[] = {b}; \ 
unsigned int outargc[1]; \ 
 highLevelCallService(aesdefault, redundancy, AES_SERVICE, 2, 
aes_inargv, aes_inargc, aes_outv, outargc); \ 
}) 
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