

University of Southampton

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

Core Services: A new design methodology for
MPSoCs

by

Dimitrios Kouzis - Loukas

September 2006

A dissertation submitted in partial fulfilment of the degree of
MSc Microelectronics System Design

by examination and dissertation

 II

Abstract

Significant research effort in platform based design has given numerous interesting
and innovative solutions to some of the recent VLSI design automation problems.
Emerging Multi-Processor System-on-Chips (MPSoC) feature reconfigurable
components and hierarchical busses or Networks-on-Chips as communication
infrastructure.

Core Services methodology reported in this dissertation uses mechanics inspired by
Web Services that most software engineers are already familiar with to exploit
efficiently dynamic partial reconfiguration and run-time mapping of current System-
on-Chips (SoCs) to provide guaranteed performance increase and fault tolerance on-
demand. Core services can be efficiently implemented in platforms with
communication infrastructures including busses and network-on-chips.

Core Services define a function-level abstraction of the underlying hardware
processing elements and a resource management mechanism (Service Broker)
which optimises at run-time the mapping of functionality to available processing
resources. Service Broker also measures the frequency of requests and configures
reconfigurable elements to increase system’s performance. Fault tolerance is
considered as a resource management problem and thus solved transparently by the
Core Services framework.

We validate Core Services methodology by applying it on Xilinx’s reconfigurable
platform for high-end FPGAs. The stack of software and hardware components for
communication, data management and function virtualization is implemented and
evaluated. A user-friendly application interface (API) and a powerful device driver for
MontaVista embedded Linux are provided. Hardware and software components are
created automatically by an easy to use platform building application able to run on
Windows and UNIX workstations. The platform is being evaluated with two
computationally intensive applications, AES encryption and MP3 decoding that get
accelerated in different levels of granularity. We conclude by presenting our
benchmarking results on a complex use case of these applications.

 III

Acknowledgements

First and foremost I would like to my supervisor Professor Bashir Al-Hashimi for his
invaluable support and patient guidance during the course of this thesis.

I would also like to thank Dr. Paul Rosinger for his support on my first steps of this
thesis. Our conversations gave me insights on unexplored fields and revealed
interesting problems. It was a pleasure to work with you.

I dearly thank my family and my dear Eva for their never-ending love and moral
support.

 IV

Table of contents

Abstract ... II
Acknowledgements .. III
Table of contents.. IV
List of figures.. VI
Chapter 1. The landscape ... 1

1.1 Multiprocessor System-on-chips ... 2
1.2 On-chip communication... 3
1.3 Reconfigurable hardware .. 4
1.4 The future .. 5

Chapter 2. Introduction to Core Services .. 7
2.1 Web services... 7
2.2 Components of a Core Services system ... 8
2.3 Advantages of Core Services.. 9

2.3.1 Run-Time Mapping .. 10
2.3.2 Reconfigurable Hardware Management.. 12
2.3.3 Fault tolerance... 13
2.3.4 Platform based design... 16

2.4 Related Work... 19
Chapter 3. Core Services methodology, mechanics and implementation........... 20

3.1 The methodology... 20
3.2 Core Services’ communication protocol and algorithms 21

3.2.1 Phase I. Service request ... 21
3.2.2 Phase II. Service execute.. 23
3.2.3 Mapping algorithm... 25
3.2.4 Reconfiguration management ... 28

3.3 Implementation issues... 33
3.3.1 On a bus based system (CoreConnect/Amba).................................. 33
3.3.2 On networks-on-chip ... 35

3.4 What to make a Core Service? ... 36
3.4.1 Estimating speedup margins ... 36
3.4.2 Estimating communication overhead... 37
3.4.3 Other aspects .. 39

Chapter 4. Implementation on a reconfigurable platform 40
4.1 Implementation of Core Services on Xilinx’s platform 40

4.1.1 Hardware components .. 40
4.1.2 Linux Device Driver and the API.. 42
4.1.3 Service Builder platform generator .. 44

4.2 Applying the methodology on the two demonstration applications............ 44
Chapter 5. Evaluation and future work .. 50

5.1 Benchmarking and results... 50
5.2 Summary ... 52
5.3 Conclusion and future work... 53

References.. 55
Appendix A. Overview of Xilinx’s hardware, tools and design flows 62

A.1 Hardware and tools overview ... 62
A.2 Dynamic reconfiguration flow.. 64
A.3 Montavista Linux... 65

Appendix B. Hardware entities.. 66
B.1 Service Interface... 66
B.2 Service Interface... 66
B.3 Default Variable Manager ... 67
B.4 Default Services.. 68

 V

Appendix C. Source Code... 68
C.1 Reconfiguration through HWICAP.. 68
C.2 rijndaelEncrypt AES encryption function .. 69
C.3 synth_full mp3 decoding function ... 71

Appendix D. Various topics ... 74
D.1 The checksum .. 74
D.2 I/O operation efficiency... 74
D.3 XPS project debug and time traces .. 75
D.4 A quick tutorial in Core Services... 76

Appendix E. Advanced implementation issues ... 81
E.1 On networks-on-chip supporting multicasting... 81
E.2 Interfacing external networks: A case study ... 82

Appendix F. API documentation.. 84
F.1 Low level API .. 84
F.2 High level API ... 85

 VI

List of figures

Figure 1. A System-on-Chip (Soc) featuring Network-on-Chip (NoC)......................... 1
Figure 2. Normalized publications that include certain terms on IEEE Xplore 1
Figure 3. NoC based System-on-Chip .. 5
Figure 4. Web service's mechanics .. 7
Figure 5. A Core Service transaction .. 9
Figure 6. Advantages of Core Services .. 10
Figure 7. Stating mapping... 11
Figure 8. Run-time mapping.. 11
Figure 9. Core Services' mapping... 12
Figure 10. Reconfiguration support at current platforms... 12
Figure 11. Reconfiguration management with Core Services................................... 13
Figure 12. Fault tolerance methods ... 14
Figure 13. Typical audio/ image commercial application .. 14
Figure 14. Fault Tolerance with Core Services ... 15
Figure 15. Out of order fault tolerance with Core Services 15
Figure 16. Platform based design with Xilinx Platform Studio and MontaVista linux 16
Figure 17. Core Services' stack over Xilinx’s Platform.. 17
Figure 18. Core Serices Builder: The Core Services' GUI .. 18
Figure 19. Core Service transaction details .. 21
Figure 20. Service request packet format ... 21
Figure 21. Service assignment packet format... 22
Figure 22. Request packet format... 24
Figure 23 Response packet format ... 24
Figure 24. Free resource packet format.. 25
Figure 25. Total cost for two Core Services .. 28
Figure 26. A service as a two state Markov process... 29
Figure 27. Performance vs speedups ... 31
Figure 28. Performance vs frame size .. 31
Figure 29. Performance vs tth.. 32
Figure 30. A typical AMBA system.. 33
Figure 31. CoreConnect block diagram .. 33
Figure 32. Bus-based architecture registers ... 34
Figure 33. Core Service mechanics on bus-based architecture 34
Figure 34. Service broker status register (SBSR) ... 34
Figure 35. Service broker status register (SBSR) ... 35
Figure 36. IPs used by the Core Services on a NoC architecture............................. 35
Figure 37. The Core Services' hardware stack over Xilinx's stack............................ 40
Figure 38. The Service Interface state machine ... 41
Figure 39. Default Variable Manager .. 41
Figure 40. Default Services' Interface ... 42
Figure 41. Core Services' software stack.. 42
Figure 42. Layers and implementation files. Shaded files are platform specific. 43
Figure 43. The interface provided by the Device Driver.. 43
Figure 44. AES accelerator block diagram.. 47
Figure 45. Simulation of the AES accelerator ... 48
Figure 46. MP3 accelerator block diagram ... 48
Figure 47. Simulation of the MP3 accelerator ... 49
Figure 48. Test system configuration .. 50
Figure 49. Performance over time with accelerators inactive 50
Figure 50. Performance over time with accelerators active 51
Figure 51. System’s performance with active/inactive accelerators.......................... 52
Figure 52. Architecture overview of Virtex II Pro FPGA .. 62

 VII

Figure 53. System Core Diagram for the Development Board.................................. 63
Figure 54. Xilinx ISE development environment ... 63
Figure 55. Xilinx XPS development environment.. 64
Figure 56. Multicasting scheme of Core Services... 81
Figure 57. External web service request example .. 83

 1

Chapter 1. The landscape

We live in the System-on-Chip (SoC) era. Complex requirements of current
applications have forced VLSI design engineers to integrate multiple components on
a single chip. Efficient communication between the components is challenging and
has been the subject of intensive research. The Network-on-Chip (NoC)
communication scheme seems promising in satisfying the communication needs of
current SoCs. The structure of a modern SoC featuring NoC can be seen in Figure 1.

Figure 1. A System-on-Chip (Soc) featuring Network-on-Chip (NoC)

Figure 2 shows the percentage of publications that include terms used in modern
VLSI design such as reconfigurable, NoC, SoC and also Fault Tolerance. This
figure’s data was obtained using the IEEE Xplore over the period 1990-2005.

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Fault tolerance reconfigurable noc soc

Figure 2. Normalized publications that include certain terms on IEEE Xplore

We can see that after 2003 about 1% of the annual publications include the term
“system on chip”. Impressive considering the different research areas IEEE Xplore
covers. The silicon integration and new opportunities that current system-on-chips

 2

provide is the hottest topic of the first half of this decade and will probably continue to
be. We can also see that there is a steady increase of publications on
reconfigurability. As clock frequencies are hard to increase anymore researches are
looking at reconfigurability as a means of increasing performance by transforming the
performance problem from clock frequency problem to an area problem were
Moore’s law (see section 1.1) still holds true. We can also observe the emerging field
of network-on-chips being in 2005 in about the same position where system-on-chips
were in 2000. A final observation can be made for fault tolerance. For the last 15
years 0.5% of all the publications on IEEE Xplore refer to fault tolerance. The reason
is the wide meaning of this word, making it useful on many contexts but clearly there
is a continuous need for fault tolerant systems in all levels of Electrical and
Electronics Engineering.

The key message from Figure 2 is clear. We are now designing systems-on-chip that
have multiple processing elements possibly reconfigurable and in the very near
future innovative designs will deploy interconnection infrastructures such as
networks-on-chip. On the following sections we will present the current status of SoC
design regarding the processing elements (section 1.1), communication infrastructure
(section 1.2) and reconfigurability (section 1.3). We will conclude in section 1.4 with
some future perspectives.

1.1 Multiprocessor System-on-chips
There is a constant need for integrated circuits with more processing performance
and lower power consumption. At the same time it is increasingly hard to increase
the operation frequency or lower the supply voltage without affecting system’s
reliability. The answer to these constraints seems to lie in Moore’s “law” [1]; “the
number of transistors on a chip duplicates every 24 months”. The International
Technology Roadmap for Semiconductors predicted that chips with billion transistors
where within reach [2] and Montecito version of the Itanium processor already proved
that in 2006 by having 1.7 billion transistors.

More transistors on a chip allow us to build complex systems optimized for certain
application domains. More processing performance and lower power consumption is
realized by using specialized processing elements (PEs) for tasks with different
requirements. For example on a single chip a DSP algorithm can run on a DSP core,
an operating system on a microprocessor and advanced video operations on custom
hardware. Increased complexity makes designers face many challenging problems
[3]. Power consumption increases with the number of components and may be
attacked at device level [4], communication level [5] and software level [6]. The real-
time constrains and performance (throughput) constrains are attacked by employing
innovative heterogeneous architectures. For example instead of the standard
memory hierarchy (registers, caches, external memory) employed on general
purpose computational systems a MPSoCs frequently features custom memory
setups including FIFOs, caches and scratchpad memories. These advanced
architectures give competitive advantage on MPSoCs over traditional symmetrical
multi-processor systems in terms of performance and power consumption. Security is
an emerging issue for MPSoCs. Hardware and software must be designed to be
secure especially in mission critical applications. This overlooked design aspect has
to be given special attention since more SoC based devices are connected to public
networks like the Internet. Finally, the most important problem with the increased
system complexity is the ever increasing design gap. Every MPSoC requires its own
suite of software tools (compilers, simulators etc.) and testing and verification
becomes increasingly complex, time consuming and expensive. The solution seems

 3

to be in design reuse with a platform based design approach which is a good choice
but not a panacea [7].

1.2 On-chip communication
Many cores mean more communication between them and between the shared
resources. This may be significant when blocks of data have to be transferred
especially if they are small and frequent in which case hidden factors like
handshaking and arbitization may produce significant overhead which is not visible
unless detailed models of communication get used.

Many solutions have been reported to the problem of communication. Traditionally
busses are employed for this purpose. An ASIC designer had to design carefully a
custom set of busses to meet the bandwidth requirements of each communication
path. These busses where very often bi-directional, using tri-state buffers. With
higher frequencies bus design and verification became increasingly difficult because
wires get longer and the inductive characteristics make transmission line effects
apparent. The amount of design re-use is also limited since protocol translators
(wrappers) have to be used whenever there is a change on the bus topology which
costs in terms of development time and system’s performance.

It became apparent that some standardization of the bus interfaces would benefit the
ASIC industry. Three are the most standard bus interfaces at this moment. IBM’s
CoreConnectTM bus, ARM’s AMBA bus and OpenCore’s Wishbone interface. The
first two come with some out-of-the-self implementations of interconnection and
arbitization scheme for certain platforms while the third one leaves interconnection to
the designer. CoreConnect and AMBA are both hierarchical busses featuring high
performance busses for components such as memories and processors and lower
performance busses for slower peripherals like communication ports. High speed
buses tend to be unidirectional because bidirectional registers are hard to implement
and registers are required because data transfers are pipelined in more that one bus
clock cycles. High performance busses use multiplexers and have separate input and
output paths that unfortunately use more wiring and area. Busses don’t scale up so
well because only one master can own the bus at each moment.

The successors of busses seem to be networks-on-chip. The idea of NoCs appeared
at mid 2001 by the classic works of Benini and De Micheli [8, 9]. A thorough overview
of the NoC technology its promises and details for two NoC implementations Xpipes
and Æthereal can be found in [10] and other recent are listed in [11]. The introduction
of NoCs forced designers to move from a computation-centric to a communication-
centric approach. New models [12, 13] and tools [14] had to be developed to aid
design exploration [15] and hw/sw co-design [16].

Network-on-Chips allow simultaneous use of chip’s resources by having cores or
local busses assigned to a node on an on-chip network. Nodes can communicate to
each other by transferring packets of data. A response to a request from a core may
take several clock cycles to arrive but it may be large enough to pay for this latency.
At the same time many other cores may be taking equally large responses from other
sources if there are no routing conflicts. Networks-on-chip have the potential of
making better use of the increasingly expensive global wiring of a chip by utilizing
less expensive routing logic. Interestingly only wishbone interface [17] mentions
crossbar switch interconnections (the nucleus of every network-on-chip topology). All
busses can support network-on-chip topologies via special network interfaces as
seen in [18]. By issuing non-blocking memory writes on NI a master core (MC)
makes requests and sends parameter data. Then MC proceeds in doing other tasks

 4

and when the reply to his request is available on the NI it issues an interrupt to the
MC in order to notify that reply data are ready. The terminal core completely
abstracts the network infrastructure and gives the programmer a relatively familiar
programming model if you set aside the fact that the response is asynchronous.
Alternatively polling or thread suspend on a multithreading environment can give a
synchronous feeling of this communication.

As NoCs is a new technology there are many unexplored fields. For example in [19]
a study on the differences between battery efficiency and energy efficiency is being
done for reconfigurable hardware. Battery behaviour is non-linear and the energy
delivered is a function of the discharge profile. A similar study doesn’t yet exist on
reconfigurable NoCs. Security in NoCs is also an almost untouched field. In [20]
some possible attack scenarios are being examined.

1.3 Reconfigurable hardware
Reconfigurable computing has received interest for more than two decades. Despite
of that interest there are very few industrial applications of reconfigurable computing.
As with artificial intelligence, the reason that reconfigurable computing doesn’t yet
seem to have produced impressive results is that it gives techniques to other
research areas without being credited.

“Reconfigurable hardware is able to merge the performance of ASICs and the
flexibility offered by the microprocessors” [21]. Critical software loops (kernels) can
get accelerated [22, 23] by reconfiguration and at different levels of coupling between
the processor and the reconfigurable fabric [24] giving different performance/energy
efficiency levels in the cost of design complexity. There are various ways to
categorise reconfigurable computing (for a more thorough discussion see [25]). The
most widely adopted is the fine versus coarse-grained categorisation. The former is
referred to our well known FPGAs which have very small reconfigurable datapaths
usually 1-bit wide and a large communication mesh that can route them very flexibly.
There also exist coarse-grained reconfigurable processors in the form of
reconfigurable arrays (RAs) that feature reconfigurable datapaths with sizes larger
that 1. These feature less configuration memory, reduced reconfiguration time and
complexity of the placement and routing problem but are less flexible than fine
grained solutions. In [26] and [27] numerous examples of this category are presented
with details about their programming and a discussion of the software/configware
partitioning problem. Nowadays we see the two categories merging as for example
fine-grained FPGAs feature coarse-grained components like multipliers, DSP
primitives, block rams and microprocessors but even more as their building logic
blocks are becoming complex enough to model 1-4 bit ALUs.

The most important aspect of run-time reconfigurable processors that is often
overlooked in the literature is that they impose, at least up to now, a large
reconfiguration time during which they can’t perform any computation. This creates a
trade-off between how often reconfigurations are decided and the speedup that the
reconfigurable hardware provides. Partial reconfiguration [28] reduces
reconfiguration time but increases complexity by giving the designer flexibility on the
amount of the fabric he wishes to reconfigure. In [29] for example a two level
reconfiguration scheme is presented to minimize reconfiguration time. In a mutli-
trheaded [30] and even more in a multi-processor environment the use of
reconfigurable PEs has to be scheduled accurately in order to maximize hardware’s
acceleration. Our work goes one step further by considering also communication
costs into run-time reconfiguration.

 5

Reconfigurable hardware and NoCs fit suitably well each other. The varying
communication channel capacity demand of reconfigurable hardware can be
addressed by dynamically reconfigurable NoC as shown in [31-33]. A comparison
between this technique and dynamically reconfigurable busses is presented in [34].
Similar approaches have been examined in [35]. In [36] it is observed that NoCs
would be an excellent routing resource for FPGAs and such a combined flow is
presented in [37].

1.4 The future
The future may not hard to predict. Two different worlds; traditional computing and
embedded computing are converging. The problems that computer scientists were
facing a few years ago are soon going to be faced by electronic engineers. For
example with multiprocessor SoCs well known problems of multithreading and
computer clusters like priority inversion, convoying, deadlocks, livelocks and
composability [38] are going to be faced on embedded software/hardware.
Distributed databases-on-chip (DoC) over networks-on-chip may likely replace the
traditional shared memory in order to attack such weaknesses and provide software
developers with a familiar programming model hiding the weirdness of the underlying
hardware. We already see some recent work [39-42] on the old concept of
transactional memory [43, 44] and some new ideas [45].

Figure 3. NoC based System-on-Chip

Although there are numerous thoughts at present now on the architectures that will
be built around NoCs, the communication patterns that arise in most applications
dictate topologies like the one shown in Figure 3. As we can see busses not only
don’t get abandoned but are used even more but they get simple (again). Increased

 6

round-trip time of NoCs prevents them from fetching instructions on a processor and
thus each core must have its own local memory at least for storing the program. The
way to attack the memory bottleneck is by using multiple memory interfaces
wherever needed. Tightly coupled processors are going to share the same bus while
clusters of processors are going to communicate via NoC. The main communication
mechanism over NoC is likely going to be Best Effort (BE) for small data packets
(<8kB) and thus the buffers on routers are going to consume reasonable area.
Strategically based distributed databases-on-chip are going to satisfy the shared
memory requirements of cores with a safe way providing transactions and coherence
protocols. The inter-processor communication using NoCs is going to be limited to
message passing possibly with references on database keys. All the processors will
be multi-threaded in order to take advantage of the idle time between network
requests and responses.

 7

Chapter 2. Introduction to Core Services
In the following sections we are going to present briefly the Core Services Mechanics
(section 2.2) after a short introduction to the inspiring software technology of Web
Services (section 2.1). In section 2.3 we are going to present the advantages of Core
Services over traditional methodologies and in section 2.4 we present related work
highlighting the differences with Core Services.

2.1 Web services
According to the W3C [46] a Web service is a “software system designed to support
interoperable machine-to-machine interaction over a network“. It power lies in the
flexibility it provides. A Java program can invoke Visual Basic .Net functions on the
same or another PC that could run the same or another operating system. One may
reasonably wonder, is this enough to make a technology such a success? The real
reason that web services are a success is that companies found it as an easy way to
charge for their services on a per usage basis and at the same time programmers
found it reasonably easy to use. For example by using web services, Google Maps
can charge a very small fee per request. If web services weren’t available it should
licence access to the whole GIS database to a client obviously in a much higher rate.

Clearly it would be of benefits in terms of flexibility to deal with expanding number of
cores with a similar approach. For example a general purpose microprocessor
running Linux could be able to invoke a function on a DSP core or an non-
programmable hardware component. Actually it would be even better if we didn’t
have to statically refer to a component in order to invoke the function. What we want
is to have the work done with the best (e.g. fastest) way and we don’t really care on
who exactly is the core that is going to execute it.

So, lets see the actual mechanics behind the web services. As you can see in Figure
4 there are three main actors for web services; the
Service Provider, the Service Requester and the
Service Broker. The names are self explanatory
except of the Service Broker. This is a repository
that holds information about web services from
many providers. A service requester can query a
service broker and get a list of web services that
suit its needs, if available. This is the least
developed part of the standard.

These actors use some protocols to achieve their
goals. The service requester makes the request
and gets the response by using standard web
protocols like SOAP [47], XML-RPC or REST [48]. All of them are protocols based on
http and use XML. An XML-RPC call for example could be an http request like this:

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><i4>41</i4></value>
 </param>
 </params>
 </methodCall>

Figure 4. Web service's

mechanics

http://en.wikipedia.org/wiki/Image:Webservices.png

 8

and a possible response could be like this:

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>South Dakota</string></value>
 </param>
 </params>
 </methodResponse>

This demonstrates the simplicity and the power of Web Services. All that is required
is a web page request and response receipt using the widely supported XML format.
Error handling and some primitive data types like integers, strings, structures and
arrays are also provided by these protocols.

The second part of the web services functionality is achieved with WSDL [49] and
UDDI [50] protocols. UDDI means “Universal Description, Discovery, and Integration”
and provides the semantics for describing the needs of an application for a Web
Service. That in turn returns a WSDL description of registered Web Services that
satisfy these needs. UDDI mechanisms are practically used inside companies to
dynamically link web services on a corporate domain.

Summarizing the two above, there are two components that are needed to make a
web services interface:

1. A component to pass requests and get responses from a Service Provider
2. A component able to match Web Services to application’s needs

There has been recent attempt to use reconfigurable hardware for web services [51]
but obviously web services’ text-based communication protocols are too heavyweight
for chip level use.

2.2 Components of a Core Services system
We will now present the way Core Services are realized in a multiprocessor System-
on-Chip. What we need is two kinds of hardware and software components as
described in the previous section. In this section we will present the general
characteristics for Core Services’ mechanics. In order to make Core Services
efficient there are many issues which are implementation specific and depend mainly
on the communication infrastructure. Details for these issues for common
communication schemes can be found in the section 3.3. Core Services don’t define
a mechanism for run-time service registration because Service availability is usually
known at design time. Ad-hoc service discovery would be an overhead for most SoCs
at this moment but is easy to integrate if needed.

The main actors of Core Services are:

The Service Requester: This is a processing element that wants to offload itself or
increase performance by performing a Core Service off-chip. A service requester
may be running several service requests simultaneously e.g. more than one threads
sleeping while waiting for services to complete.

A Service Broker: This is a processing element that manages the assignment of
service provider resources to requestors. It is responsible for being up-to date with

 9

system resources availability and allocating them with an efficient way for given
performance metrics. More than one requests may be initiated from different
requesters and thus an arbitration mechanism is necessary.

A Service Provider: This is a processing element that provides services. It takes the
parameters from a service requester processes and sends the response back. Each
service provider may provide more than one services but can serve only one request
at a time. This eases the design of small embedded systems but doesn’t limit larger
ones because a single multi-threaded processor may implement more than one
Service Providers. Information regarding the capabilities of a Service Provider is
being set up on the service broker at design-time but parameters like loading may
change at run-time. The service provider doesn’t have to retain its state between two
subsequent requests.

Figure 5. A Core Service transaction

Figure 5 gives an overview of a Core Service transaction. In the middle we can see
the Service requester who initializes the transaction. On the left side the object
broker analyzes the request and assigns it to an appropriate service provider which
we can see in the right side. A transaction is initialized by the service requester and
terminates either at the end of service assignment if there is no such service
available or at the end of processing by a message to the request broker notifying
that the resources are no longer used.

2.3 Advantages of Core Services
Core Services address four main problems of modern System-on-Chip design (see
Figure 6):

1. Run-Time Mapping
2. Reconfigurable Hardware Management
3. Fault tolerance
4. Platform based design

 10

Figure 6. Advantages of Core Services

We will examine these problems, the way that others solve it and what advantages
Chip Services provide over other methods in the following sections.

2.3.1 Run-Time Mapping
Traditionally static methods [52, 53] have been used for mapping communication
transactions and computation tasks to PEs. In practice [54] mapping distributed
applications into NoC architectures is quite difficult even with simple static mapping if
the application is not designed for the platform at first place. Many studies have been
done in static mapping for minimum energy consumption with realtime constraints by
using linear programming [55] evolutionary [56] and other [57-59] algorithms.

 11

Figure 7. Stating mapping

In Figure 7 we can see an execution scenario with static scheduling. Processor 1 is
master and initializes two tasks in slave processors Processor 2 and 3. All of them
run in parallel and when they all complete the master Processor 1 returns the
function results and is free to start another function e.g. by initializing another task in
Processor 3. Stating mapping creates a static schedule on the processing elements
of a system. This is being obtained via profiling and defines the performance and the
power efficiency of the system.

Run-time mapping has recently started being investigated. In [60, 61] they propose
use-cases to reconfigure the network more efficiently, an idea that is also employed
in [62]. Generally, reconfiguring the network [63] seems to be the preferred way to
reduce network contention and provide fault tolerance [64-66].

Figure 8. Run-time mapping

As we can see in Figure 8 run-time mapping schedules operations at run time taking
into account the computation and communication loads. By scheduling at run-time
the system can perform optimally under several different use cases in contrast to
static scheduling. As Peng Yang et al. discuss [62] modern standards like e.g.
MPEG21 and MPEG4/JPEG2000 execute code based on non-deterministic events
and as a result design-time mapping is unable to provide optimum performance. Run
time mapping usually employs a scheme where a master processor uses an
operating system to profile the system and schedule tasks on slave processors.

Both static and run-time scheduling won’t scale well in future MPSoCs because they
feature multiple equivalent masters that have to compete for the same accelerating

time

 12

resources. In order to improve the system’s performance we need to accelerate on-
demand all the masters.

Figure 9. Core Services' mapping

Core Services are designed for these systems. As we can see in Figure 9 the
requests from multiple masters are being processed by a centralized scheduler
mechanism, the Request Broker. It is trying to optimise system’s performance by
mapping functionality to Slave PE’s (Service Providers). It must be noted that a
master processor may also provide services and thus invoke calls into itself.

2.3.2 Reconfigurable Hardware Management
There are two main problems with reconfigurable hardware. The first one is the
communication between reconfigurable components and the second one is when to
decide reconfiguration. A master device must be able to communicate with the
reconfigurable component independently of its current configuration. This requires a
level of communication abstraction. Also alternatives of reconfigurable component’s
functionality must be available in order to address the unavailability of the
reconfigurable processing element during reconfiguration. Finally the decision of
reconfiguration should be made according to the current processing needs of the
application.

Figure 10. Reconfiguration support at current platforms

 13

All these problems are being addressed with a very Ad-Hoc manner at this moment
[30, 67-69]. Communication with reconfigurable components is being done by having
several different drivers and using one of them according to the current configuration.
The alternative implementation during reconfiguration is usually addressed at
application level. Also reconfiguration is being decided based on the demands of a
single processor and runs in parallel with the scheduler on the operating system.

Core Services were developed while working on a reconfiguration problem. The
problem of abstracting functionality that because of reconfiguration sometimes exists
and others not leaded to a run-time mapping solution.

Figure 11. Reconfiguration management with Core Services

As we can see in Figure 11 the request broker has already all the information needed
to decide efficiently and transparently if a reconfiguration is needed. It knows the
demand for each Core Service and the performance gains if it was available on one
or more reconfigurable components. The most important is that by using the Request
Broker for reconfiguration management the whole system can be totally unaware of
the existence of reconfiguration. It’s completely hidden behind the Core Services’
Applications Interface (API) and provides optimum hardware acceleration. Operating
systems (such as Linux) can be used for Masters without the need of customizations.
An additional advantage is that the reconfiguration management can be done in a
non application specific manner and thus reused over designs. This is a very
important benefit of the Core Services’ mechanism.

2.3.3 Fault tolerance
Fault-tolerance allows a system to continue operating properly when some of its
components fail [70]. The main problem with VLSI systems is to ensure transient
fault-tolerance which means tolerance to Single Event Upsets (SEUs) [71]. Fault
tolerance is traditionally being enhanced with the following four methods (Figure 12):

a) Time redundancy: A single function is being executed more than once and the
results are compared. This is very popular technique since it requires less
hardware/software resources but a multiple of the original time of the function is
being used decreasing performance.

b) Hardware redundancy. In contrast to time redundancy, this technique uses a large
number of modules each one executing the same function and their results are being

 14

compared. Obviously this requires a lot of extra resources but it can achieve
increased performance.

Figure 12. Fault tolerance methods

c) Software redundancy: In this approach sanity tests are being applied to the output
data in order to verify that they are correct. This requires extra time but less than time
redundancy technique. The fault tolerance techniques of this kind are highly
application dependent and can hardly get reused.

d) With information redundancy additional information is being used e.g. checksums
that verify that data are correct with less performance penalty than time and software
redundancy.

The main problem of fault tolerance is adjusting the number and the kind of
redundant system resources. We have again a resource management problem.
Partial reconfiguration can help in the correction of SEUs on the configuration
memory as we can see in [72]. We use it to correct efficiently SEUs on application-
level functionality. Only a small amount of system’s processes are critical enough to
need fault tolerance.

Figure 13. Typical audio/ image commercial application

For example in commercial applications we frequently find computational
requirements for data-oriented algorithms e.g. DCT and control oriented e.g.
compression algorithms as shown in Figure 13. A fault in the DCT algorithm is
insignificant but a fault on the compression algorithm is critical since it may cause
loss of synchronization and system failure. If both the DCT and the compression
algorithms can be accelerated on a reconfigurable hardware component which one
should get accelerated? The answer is not straightforward since the two algorithms
share a common data stream. If we accelerate the DCT algorithm and choose to
have time redundancy for compression we may end up with a bandwidth that the
latter can’t handle. If we provide hardware fault tolerance to the compression
algorithm the DSP algorithm may be unable to provide the appropriate bandwidth to
the compression algorithm. Carefully tuned dynamic resource management switching

 15

between hardware and time redundancy gives the best solution in this scenario and
most real-life applications are like this.

Core Services use the run-time mapping mechanism to provide fault tolerance with
an optimum way at a given time. The most important advantage is that they achieve
this without any development effort. Fault tolerance is being provided by the
framework and can also be used at design time for debugging purposes i.e. verifying
the equivalence between hardware and software implementations. Each service call
is being invoked with a redundancy parameter which specifies how many voting
results (up to 16) should agree to accept a result. These voting results are being
obtained by executing the service in the fastest combination of (hardware or
software) service providers available at that time as we can see in Figure 14.

Figure 14. Fault Tolerance with Core Services

The results of a Service may be large vectors and comparing them would be a waste
of time but most importantly waste of precious bus’s cycles in order to collect them in
the core where voting takes place. In Core Services only one Provider returns the full
set of results and a checksum while the others return only their checksums saving
significant bus bandwidth. The kind of checksum is not specified by Core Services
and this allows significant application specific optimizations. In a software dominated
platform the use of a Linear Feedback Shift Register (LFSR) for checksums would
require significant computational resources. Additionally by comparing only the
checksum we may be able to save time by not performing operations that produce
invariant results in respect to the checksum. For example in many encryption
algorithms the final step is a scrabbling of the output parameters. If the checksum is
a simple addition this last step is unnecessary because the sum of numbers is
invariant to their order.

Figure 15. Out of order fault tolerance with Core Services

 16

Finally the processor may go on with its computations as soon as the first full result
arrives assuming that it’s correct. Checksum comparison may take place latter when
all Services complete and in most of the cases it will be correct giving near non-fault
tolerance performance (see Figure 15).

2.3.4 Platform based design
Platform based design promises to increase productivity, decrease time to market
and development costs by re-using out-of the self pre-verified components within a
platform framework [73]. At this moment platform based design as provided for
example by Xilinx via Xilinx Platform Studio (EDK) is a good step towards these
promises. You can easily develop a complex system consisting of IP cores provided
by Xilinx and its partners. For example for the XUP Virtex II Pro platform (see
Appendix A) one could easily connect two PowerPC cores with RAMs and other
peripherals by using the CoreConnect hierarchical bus. It’s quite simple to create the
hardware and basic software drivers for this platform by using XPS giving a kick-start
for developing new applications (see Figure 16). There is also the option to use
MontaVista linux which offers all the software friendliness of Linux and device drivers
for most of the essential peripherals of the platform.

Figure 16. Platform based design with Xilinx Platform Studio and MontaVista linux

Still, the question remains: Why to use Xilinx’s Platform Studio when there exist more
efficient processors with equivalently large set of peripherals and at least equally
good software support in a less power hungry and cheaper application oriented
System-on-Chip like Philips’ Nexperia. The answer is reconfigurability. Xilinx’s flow
supports the addition of custom hardware accelerators who offer the potential of
unbeatable acceleration.

But how well does this platform’s flow supports its only competitive advantage? The
answer is not so well. There is only one wizard that allows the creation of a template
custom hardware and software peripheral. In fact a developer for this platform can’t
avoid studying the underlying PLB/OPB busses, work explicitly to convert the
endianess’s of the signals and resolve a lot of handshaking problems. From software
side a template is provided that slightly abstracts the underlying bus. A custom driver
has to be developed in order to transfer data to the custom core and get responses
back. Of course there is no support at all for Linux for which someone has to re-
develop a complete device driver in order to access the peripheral. After all this effort
what does someone have? A component that is very tightly coupled to the platform. If
the communication infrastructure changes e.g. turn to NoC then the hardware will

 17

have to be modified again or at least get “wrapped” possibly loosing some of its
performance. The device drivers also will change. Hopefully if the device driver is
well written, user applications won’t need modifications. The worst of all from a
business point of view is that all these IPs are very platform specific and for example
for sophisticated components it would be very expensive to switch from e.g. Xilinx to
Altera. Obviously every company wants to be vendor independent in order to take
advantage of vendor’s competition so it’s forced to implement its own abstraction
over these platforms for its IPs.

Figure 17. Core Services' stack over Xilinx’s Platform

Web Services deal with machine-to-machine interoperability and Core Services do
the same on a platform-to-platform level. They achieve this by adding one software
and two hardware abstraction layers over Xilinx’s flow. From the hardware layer the
communication layer hides completely the bus and Core Services’ communication
protocol and provides an interface suitable for memory-like (slaves) components. On
top of it that the data storage layer holds the data in the form of one independent
RAM for each variable used for a service provider. It provides an interface that is
suitable for processor-like components (masters). On top of it lies the actual Service
Provider which can access each variable independently increasing the maximum
achievable throughput and thus minimizing the computational time. By having two
layers of abstraction we support two stage reconfiguration [29]. Implementation at
the top abstraction level is very simple. For example for the calculation of a
mathematical expression like 1 2out in in const= + ⋅

uuur uur uuur uuuuur
 an implementation could be

almost as simple as this:

out[count] <= in1[i] + in2[count] * const[count];
outwe[count] <=’1’;

Passing the variables, returning the parameters and communicating with the software
is being handled by the middle layers.

 18

From software side there are similar improvements over the Xilinx’s platform. A Linux
Device Driver that provides access to the Service Broker and the Service Providers is
provided. Each of them is being accessible as a single device in the /dev/ directory.
On top of that the low level and high level API are provided to the applications. The
low level API provides more flexibility to the application developer in terms of
performance but requires better knowledge of the Core Services’ functionality. The
high level API uses the low level API and gives the developer a completely abstract
remote procedure call interface. No knowledge of Core Services internals is required
at this level. For example a call using the high level API would be as simple as this:

void funDefaultMAC(int * in1, int * in2, int* out) {
 // Default (software) implementation
 for (int i = 0; i < 10; i++)
 out[i] = in1[i] + in2[i] * const[i];
}
…
csMAC(funDefaultMAC, in1, in2, out, NO_REDUNDANCY);

As you can see, there are no hardware references at all. This abstraction level is
much more platform independent than a traditional call like this:

send_peripheral_data(REQUEST, BROKER_ADDRESS);
p = get_peripheral_data(BROKER_ADDRESS);

for (int i = 0; i < 10; i++)
 send_peripheral_data(in1[i], PERIPHERAL_BASE_ADDRESS[p]);
…

Figure 18. Core Serices Builder: The Core Services' GUI

 19

As described in [73] with the ever-increasing pressure of time to market
infrastructures and tools must be developed in synchrony with design methodology.
Core Services’ methodology is being accompanied by tools and infrastructure
including Core Services Builder (see Figure 18), a user friendly interface via which
one can customize Core Services and Service providers and have all the hardware
and software created automatically. The tool provides interactive information for the
communication costs and performance gains in order to aid designer’s decisions.

2.4 Related Work
Several other researches have attempted to solve some of these problems with
approaches similar to Core Services. We will present the most similar works and
highlight the points where Core Services differ.

Object oriented methodology has the idea of polymorphism which means that a
function call may map to different implementations according to the class of the
object that it belongs to. In [74] they expand their previous [75] ASIP (application-
specific instruction set processor) methodology to use the NoC to dispatch with zero
overhead virtual methods to hardware or software implementations. They do not
provide dynamic resource management as Core Services.

In [76] they present a Java based abstract stream decoder technology for
reconfigurable hardware. They lack many of the strong semantics of Core Services.
In the very interesting and somehow technical [77] transparent management of
reconfigurable hardware or software components is being proposed. They use CAN
bus for communication. “Run-time optimizations” and “partial run-time reconfigurable
modules” are left for “future versions”.

The work in [78] has many similarities with our by referring to Common Object
Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI) and
having an “IP Core Lookup Service” which instantiates objects and decides
reconfigurations which is similar to our object broker. They also use objects to
abstract hardware which is not quite suitable for reconfigurable hardware and it
naturally leads them to use ad-hoc methods for serialization in order to aid relocation.
Although they claim that their methodology improves performance they have no
mechanism to guarantee it as they don’t consider computation or communication
costs at all. They assume hardware implementations are faster than software without
considering the communication costs and they implicitly assume that all hardware
accelerators provide the same speedup for a functionality which is true only if the
same implementation is being used. Core services are stateless which simplifies both
hardware and software and makes relocation unnecessary. They also provide
reconfiguration mechanism and run-time mapping which optimize for performance
and guarantee acceleration via the performance deadline.

On the other hand in [79] they present a heuristic similar to ours (see section 3.2.3)
for computation and communication costs and they use it to map tasks to PEs. All the
resource management is being handled by a single master processor and although
the technique is supposed to target on multi-processor systems they describe a one-
master-many-slaves architecture. Core Services Phase I mechanism (see section
3.2.1) allows multiple masters to gain access to accelerating resources.

 20

Chapter 3. Core Services methodology, mechanics
and implementation

3.1 The methodology
Core Services are meant to be the equivalent of web services optimized for on chip
communication. The steps of the Core Services methodology are the following:

Step 1. Profile the system and sort its functions by the total amount of time
spent on each.
By starting this methodology it is assumed that there exists a functional software
prototype of the system. By profiling we identify the functions that consume most of
the time. Obviously this is the first place to look optimizing system’s performance.

Step 2. Decide if they are suitable for hardware implementation.
We give a detailed description on section 3.4 on how to decide if a function is
suitable for hardware implementation.

Step 3. Replace with service calls and provide default service implementation.
Assuming that the platform has a Core Services’ implementation this is as easy as
modifying slightly the original function and calling it via Core Services’ wrapper.

Step 4. Test the software only implementation on the platform.
At this level we can verify that the system works correctly after adding the Core
Services’ functionality by using the default software service implementations.

Step 5. Calculate the estimated savings of making a hardware accelerator for
this function. If constrains aren’t yet met, accelerate more functions.
Communication cost for the given platform can be accurately estimated at this stage
because the length of the call and return values are known. A hardware engineer can
give estimates on the speed of a hardware implementation of a certain functionality.
As a result we can know in such an early stage if the savings suffice to meet
system’s constraints. If not we can turn more functions to Core Services. If hardware
implementations can’t or needn’t be provided latter the system will still be functional.

Step 6. Create hardware test data.
By running the application as described on the previous step, we can create as many
test data as required with an automatic or semi-automatic way. Time consuming
system-level simulations are being avoided by using Core Services.

Step 7. Create hardware instance of Core Service using automatically
generated service stack and verify with the test data.
Hardware templates generated by Core Services’ fingerprint and test data can
significantly ease the implementation of the hardware component. Manual
optimizations on the templates can be performed if time allows.

Step 8. Calculate the actual savings of making a function Core Service. If the
constrains aren’t yet met, create more hardware components or optimize more
the existing ones.
At this stage we have actual data for the time it takes the hardware to complete the
service. Precise evaluation of the savings can be performed.

Step 9. Test the software/hardware implementation on the platform.

 21

Now system level testing can be performed. Testing can be eased by the fault
tolerance facilities of Core Services. Both software and hardware instances are being
called and if the checksums of the results aren’t the same warnings may be issued.

3.2 Core Services’ communication protocol and algorithms

Figure 19. Core Service transaction details

Figure 19 shows a Core Service transaction. We will present the details of the
communication protocols and the algorithms that are involved in a Core Service
transaction.

3.2.1 Phase I. Service request

3.2.1.1 Service Request
Phase I of a service transaction is the service request. In this phase, the requester
contacts a request broker and asks for service. The form of a request packet can be
seen in Figure 20.

0 15 16 31

Service ID Requester ID Providers 0001
Performance deadline

Figure 20. Service request packet format

The MSB of the first word is 1 to denote a service request packet. The fields on a
service request packet are the following:

1. The service ID of the service requested
Each service is described by its unique ID. This is system-level unique and is
assigned at design time. It is 16-bits long giving a maximum of 65536 services.

2. The ID of the service requestor
The ID of the service requestor is needed in order to return the response to the
requester and calculate inter-core costs. For example the communication costs over
NoCs may depend on the distance between the cores. This is 8-bit field so it
supports up to 256 service requesters.

 22

3. The number of service providers requested
The number of service providers may seem unnecessary but its’ necessary to
support fault tolerance. A single request may require more than one service providers
for example two for fault tolerance in a moderate faulty environment. 4-bits are
reserved for this number giving a potential of 16 service providers per request. If an
application that requires fault tolerance is run on a platform that doesn’t support it the
performance will be reduced compared to another platform that supports it because
of software simulation of multiple calls.

4. The performance deadline to be met
The performance deadline is the number of clock cycles that the service requester
estimates it will take itself to complete this service. This is being used to provide a
run-time adjusted threshold to the service broker in order to decide if it’s reasonable
to assign a service provider to this request.

In fact the performance deadline is just a metric and it isn’t bound only to time. It
could be for example a combination of energy and time. In most cases, better time
performance means also better energy performance [80-82] so it’s reasonable to use
time as a metric. The easiest way to statically predict this number is by profiling. If a
big variance in execution time is expected, the service requestor should multiply it by
a load factor dependent, for example, on the number of active threads/processes in
order to reflect its load. In might also be useful to under-estimate slightly if it’s more
important to off-load the requester in order e.g. to provide better behaviour in
unpredictable real-time events.

3.2.1.2 Service assignment
The response by the service broker can be seen in Figure 21.

0 31

Providers
Provider Unique ID

…

Figure 21. Service assignment packet format

The fields on a service assignment packet are the following:

1. Number of providers
This is the number of providers that have been allocated to the requester for this
request. It may be less than the number of service providers requested e.g. zero if no
such service is available or none meets the performance deadline. This field is 4-bits
long as the respective request field.

2. Provider ID
A list with unique identifiers for the specific service follows. These ID’s are being
used to send the parameters as described bellow. The meaning of these ID’s is
platform depended and may be for example base addresses, IPs or port numbers.

3.2.1.3 Why is a service broker needed?
A service broker is needed at least as a means of having a central repository of
services and their availability status. An alternative to this would be to have a
completely ad-hoc system in which each request would be broadcasted to the
‘market’ of service providers, they should respond by bidding for the service request
and the best offers would be accepted. No matter how nice this scenario sounds it

 23

has important performance and power drawbacks. The service request gets
broadcasted to all the service providers, even those that may not provide a service.
Additionally a large number of bids would have to be communicated even from
providers that have non chance of being accepted. Obviously all these end up in a
waste of performance and power. The existence of the central ‘marketplace’ of the
service broker saves all these resources.

3.2.1.4 Why does a service broker make the service assignment?
Alternatively the request provider could be given a complete list of services and
metrics let decide itself. Apart from the increased interface complexity and the
communication overhead such an implementation there are other important
drawbacks. The external broker DEDICATES the providers to the requesters. If this
dedications didn’t hold true in a multi-threaded but even more in a multi-processor
environment a lot of collisions would occur. Requesters of the same Core Service
would reasonably try to allocate the best resource. The first one checks if it’s free and
locks it with an atomic operation. The others check with failure and either look for an
alternative service provider or wait until the first one completes and take their turn.
Obviously this is too much overhead for an embedded system. It is much better to
have a central locking mechanism that manages the service providers. This is true
for small number of service requesters. If there were a lot of service requesters the
availability of the broker would become an important bottleneck. However a service
broker can easily be implemented by multiple cores using a shared memory for their
synchronization. Obviously the decision of making the assignment on the service
broker scales well even in much larger systems.

3.2.2 Phase II. Service execute

3.2.2.1 Parameter passing
Phase II of a service transaction is the service execution. In this phase, the requester
communicates directly with service provider to pass the parameters and get the
response.

The fact that the service provider doesn’t have to retain its state between two
subsequent accesses simplifies both hardware and software. We can’t be
guaranteed that two subsequent service requests are going to be serviced by the
same service provider. As a result, the state should be transferred from one service
provider to another which is generally impossible because different service providers
may be incompatible of each other. Even in systems where only one service provider
exists for each service a request from another thread may interleave between two
subsequent requests from a thread resulting in service corruption.

It may seem as a waste of scarce system resources that we write data from the main
memory to the hardware accelerator and we should prefer a shared memory model
where data are being passed by reference instead. Our decision is safer for several
reasons:

1. Data may not be in the main memory but in a local cache.
2. Even if you move data by reference, the service provider still will have to read

them, so you don’t save the reading part.
3. Core Services give that ability implicitly. One can pass a pointer as variable

and a service provider capable of reading the main memory will use it to read
the data. In this case one must be careful a) to give a valid physical memory
location which may be different from a pointer’s virtual address b) to resolve
cache coherence and memory ownership issues that may arise.

 24

The ability to have variable sized variables is important in order to support functions
with strings as parameters.

Core Services’ parameters and responses are only arrays of 32bit words. This is
done because it’s only meaningful to run a service on another processor if it takes
considerable amount of time. Apart from random number generation and some rare
cryptographic applications with extremely high complexity large amount of time
means large amount of data as well.

0 15 16 31

Provider Unique ID Requester ID
Service ID Variables s C

Size of array in words (n)
Element[0]

…
Element[n]

s tim
es

Figure 22. Request packet format

The format of a request packet can be seen in Figure 22. It contains provider unique
ID, the Requester ID that will be used to receive the response, the service ID
requested and the number of variables (parameters) that are being passed to the
service. The (C)hecksum flag tells the provider if a full reply should be send or just
the checksum for each variable. Then s parameters follow each one prefixed by its
size in words and then the words of the data in sequence. At the end of this packet,
the computation begins.

3.2.2.2 Response getting
The service provider sends back the response. This may be done by pulling or by
pushing depending on the platform i.e. the requester may read the data from the
provider or the provider may send the data to the requester. In the former case, there
must be a mechanism to tell the requester that the computation was completed and
the data are ready. This may be done by polling or more efficiently by an interrupt if
the platform supports it.

0 15 16 31

Provider Unique ID Requester ID
Service ID Variables s S C

Size of array in words (n)
Element[0]

…
Element[n]
Checksum

s tim
es

Figure 23 Response packet format

A similar format with the request packet is being used for response packets as shown
in Figure 23. The only difference is the existence of a checksum that is being used if
the service supports fault tolerance. If the S flag is set, then the packet contains
checksums. If the C flag is set, then the packet contains only the checksum and not
the variables themselves. Bare packet’s size and thus communication cost is
significantly reduced. The kind of checksum is platform dependent and may be more
or less software-friendly.

 25

3.2.2.3 Free resource
A free resource packet (see Figure 24) is being sent to the service broker in order to
notify that the providers have been freed and can get reused.

0 15 16 31
Providers XXXXXX XXXXXX 0000

Provider Unique ID
…

Figure 24. Free resource packet format

The MSB of the first word is 0 to denote a free resource packet. The fields on a free
resource packet have similar meaning to the ones of resource assignment packet
(see section 3.2.1.2).

3.2.3 Mapping algorithm
Mapping of the requests to the service providers is being implemented by the object
broker. There are many different ways to do them but the more intuitive way is the
following one that is actually being suggested by the Core Services’ infrastructure.

A request provides the following data: The number of providers requested pn , the

deadline dt , the service ID S and the requester ID rID . We can see in Figure 19
four times that characterize a transaction: _service requestt , _parameter putt , _response gett , executet .

The _parameter putt and _response gett can be merged to a single value, the communication

time: _ _comm parameter put response gett t t= + .

The problem is that we have a set of service providers SP from which only
ASP SP⊆ are available at a given time and each providing a set of available
services spA and we want to return a subset X ASP⊆ of p pa n≤ service providers

that provide the service ,xS A x X∈ ∀ ∈ , have minimum cost

() () { }, , |c x c s x X y SP y X≤ ∀ ∈ ∀ ∈ ∉ and less than the performance deadline

() ,dc x t x X< ∀ ∈ . We would like to have a fast algorithm because it affects the

_service requestt which is a pure overhead in service call.

The easiest way to find the best X is to maintain a list with one node for each
available service provider which has a list with one node for each available service

spA . This algorithm has a worst case complexity of () ()()()spO size ASP max size A⋅

which may be bad for large number of service providers or available services.

bestcost ←∅
X ←∅
for each service provider x in ASP do

 for each service s in xA do

 if (s S= and () dc x t< and () () ,c x bestcost t t X< ∀ ∉) then

 if ()()psize X n> then

 26

 find_and_remove(worst_element(X))
 end if

 ()bestcost bestcost c x← ∪

 X X x← ∪
 end if
 done
done

Another algorithm which has much better performance can be implemented by using
hash tables of services sh with each entry containing a sorted list of active service
providers ASPl for that service. This is a very fast algorithm that gives very fast

access time ()O 1 but requires much more memory and considerable housekeeping
effort to keep the structure up to date when availability of services changes.

[] 1...s pX h S n⎡ ⎤← ⎣ ⎦

Both algorithms are useful and there are a lot more algorithms in the middle between
them. The first one is good for hardware implementation or in a processor with limited
amount of memory or in a system that has a small amount of service providers and
services per provider. The second one is more suited to large systems with many
service providers and services and with taught deadlines that can’t afford an
increased _service requestt but can afford the extra memory needed to keep a well
organized registry.

The main problem that we set aside until now is the calculation of the cost for
executing a Core Service in a service provider ()c x . There are two dangers. The
one is to oversimplify and reduce the efficiency of run-time mapping, the other is to
over-analyze and reduce the performance benefits because of the computational
overhead of calculating the cost. We want to include the computational and the
communication costs.

The computational costs can be represented as a s pn n× matrix cc of the average

clock cycles of execution where sn is the number of services, pn is the number of

providers. Run-time variable load factors can be expressed by a vector lf of pn

elements. ()lf i = 1 when the processor i is average loaded, < 1 if it’s under-loaded
and > 1 if it’s overloaded. The computational cost including loading is

()comp cc c diag lf= ⋅ .

The communication cost can be approximated with an average bandwidth ,i jbw in
clock cycles/word from service requester i to service provider j . The number of
words per service sw includes parameter passing and response getting and is known
at design time. The total communication cost ,comm s i jc w bw= ⋅ is known at design

time and can be represented with a s r pn n n× × matrix. Note that if the

communication costs present large variance and the average bandwidth ,i jbw

 27

induces large errors we can easily add a run-time variable load factor to this model
as in the case of computational costs.

The total cost ()| , ,c x r s lf for a given service s , requester r and load factor lf ,
can be calculated with three array accesses and a multiplication. It is
() () () , ,,

| , , comp comm s x rs x
c x r s lf c c= + . If these two matrixes cc and commc are set, Core

Services are ready to work.

For example in a system with 2 service requesters and 3 service providers for 2
services. Given a run-time load factor ()1.1 1 0.8lf = and a computational cost
matrix

30 20 70
40 50 12cc ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

we have a total computational cost of

()
33 20 56
44 50 9.6comp cc c diag lf ⎡ ⎤

= ⋅ = ⎢ ⎥
⎣ ⎦

For given inter-processor bandwidth ,

1.3 1.3 2
1 1 1.3i jbw ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and ()10 20sw =

words per service we have a communication matrix:

13 13 20 26 26 40
,

10 10 13 20 20 26commc
⎛ ⎞⎡ ⎤ ⎡ ⎤

= ⎜ ⎟⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎝ ⎠

The total cost of services is:

() () () , ,,

46 33 76 70 76 49.6
| , , ,

43 30 69 64 70 35.6comp comm s x rs x
c x r s lf c c

⎛ ⎞⎡ ⎤ ⎡ ⎤
= + = ⎜ ⎟⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠

 28

Figure 25. Total cost for two Core Services

As we can see in Figure 25 the cost of the two Core Services varies not only with the
service provider but also with the service requester.

3.2.4 Reconfiguration management
Given that we have a reconfigurable service provider able to provide n services

1... nS S and currently it’s configured to provide service cS . Each service gives a
corresponding speedup of 1... ns s each time it executes and in the last frame
requests we have 1... nn n requests for each service. The reconfiguration penalty is pt
during which it can’t provide any service.

The potential speedups in the last frame requests for the i -th service are i is n⋅ .
There is a best service bS for the last frame for which ,b b i is n s n i b⋅ ≥ ⋅ ∀ ≠ . If there
are more than one best services with equal potential speedups we select as bS the
current service cS if it belongs to that set otherwise a random service from that set
and we continue.

If the best service bS is the one that we already run cS then there is nothing to do.
We have an optimum solution. If not then we have to examine the opportunity cost,
“the most valuable forgone alternative”. That’s b bs n⋅ , the potential speedup for our
best service. But we are already having a profit of c cs n⋅ because of the chosen
service cS . So the actual loss is: loss b b c ct s n s n= ⋅ − ⋅ and it has units of time.
Assuming that we will have the same profile of requests in the near future, If we
invest pt time of inactivity we will gain a future profit increase of loss b b c ct s n s n= ⋅ − ⋅

per framet . We just have to define a threshold time tht in the order of pt . If the

accumulated losst for the same bS exceeds tht we decide a reconfiguration c bS S← .

The algorithm has a complexity of ()O n because of argmax and is as follows:

 29

After a frame is complete:

()argmaxb i iS s n← ⋅

loss b b c ct s n s n← ⋅ − ⋅

if (0losst >) then

 if (b blastS S≠) then

 _cut loss tht t←

 else

 _ _cut loss cut loss losst t t← −

 if (_ 0cut losst <) then

 Reconfigure to bS

 end if
 end if

 blast bS S←

end if

For example if we have two services 1S and 2S that provide a speedup of 1 60s sμ=
and 2 300s sμ= respectively and the chosen service at given time is cS = 1S . From
the statistics we know that in the last 20frame = requests that lasted 1framet ms=

we have 1 15n = and 2 5n = requests. The reconfiguration penalty 10pt ms= and

thus we define a threshold time 5tht ms= .

Service:
1S 2S

Potential speedup
1 1 900s n ns⋅ = 1 1 1500s n ns⋅ =

Obviously the best service 2b cS S S= ≠ . The 600loss b b c ct s n s n sμ= ⋅ − ⋅ = . If 2S ’s
potential speedup continues to exceed 1S ’s for subsequent frames with the same
rate, then a reconfiguration will be decided after 5 0.6 9th losst t ms ms= = frames =
180 requests.

To demonstrate the operation of the algorithm we will do simulation. We model each
service as independent Markov Chain that has two states Active (A) and Sleep (S)
and transition probability Ap and Sp respectively (see Figure 26).

Figure 26. A service as a two state Markov process

A S
Ap

1 Ap− Sp
1 Sp−

 30

With this model we create simulation events and we check the behaviour of the
reconfiguration algorithm. More specifically we can model the following kinds of
services:

Sp Ap ST AT

a) infrequent that last a lot 0.1 0.1 50% 50%
b) frequent that last a lot 0.4 0.1 40% 60%
c) infrequent that don’t last a lot 0.1 0.4 60% 40%
d) frequent that don’t last a lot 0.4 0.4 50% 50%

Examples of these categories are the following:

 A program that uses a service: Example sequence
a) heavily in a single routine SSSSSAAAAAASSSSSSSSSSSSAAAAASSSS
b) heavily on multiple threads SAAASSAAAAAASSSAAAAAASSAAAAAAASS
c) occasionally in a single routine SSSSSSSSAASSSSSSAASSSSSAASSSSSSS
d) occasionally on multiple threads SASASSSSASASSSASSASSASAASSAASSAS

ST and AT in the table above are the amount of time spent in sleep and active state
respectively as predicted by Marcov theory. Every correct algorithm will behave
correctly on cases b) and c) by servicing them and ignoring them respectively.
Challenges exist in cases a) and d) where the probability of being in one of the two
states is equal and thus the decision depends upon the patterns of service requests.

The metric that we would like to optimise is the behaviour of our reconfigurable
machine in respect to the ideal reconfigurable machine, which services the service
with maximum speedup for each given time i.e. has zero reconfiguration time.

real speedupperformance
ideal speedup

=

In our simulation we use two services, one of type a) and one of type d) and we
observe the performance for different cases. The fact that we have only two doesn’t
significantly affect the results because this algorithm considers only two services
anyway; the best and the currently selected.

Experiment 1: 20frame = , 5tht ms= , 50pt steps= , 10 runs of 10000 time steps
each. We run for the combinations of 3 different values of speedups (50 sμ , 100 sμ ,
150 sμ) for each process. The results can be seen in the following table and in
Figure 27. Statistical errors are within 2% in every case.

 infrequent that last a lot
 Speedup(sμ) 50 100 150

50 0.67 0.799 0.856
100 0.781 0.664 0.748

frequent that
don’t last a lot

150 0.845 0.729 0.659

 31

50 100 150
50

100

150

infrequent that last a lot

fr
eq

ue
nt

 th
at

 d
on

’t
la

st
 a

 lo
t

0.8-0.9
0.7-0.8
0.6-0.7

Figure 27. Performance vs speedups

We observe that when the two classes of problems have the same speedup factors,
the performance of the reconfiguration manager is the poorest which is what we
expect because the two classes are equivalent from the perspective of speedup and
thus the error rate is 50%. On the other hand when one class provides more speedup
than the other, the performance of the manager gets optimized.

The most important feature is that the performance is symmetrical which means that
the reconfiguration manager performs equally well on both classes of services a) and
d) with a slight preference on infrequent that last a lot (a) which is reasonable given
that they behave more predictably.

Experiment 2:) 50as sμ= ,) 150ds sμ= , 5tht ms= , 50pt steps= , 10 runs of 10000
time steps each. We run for different frame sizes from 2 to 16 requests. The result
can be seen in Figure 28.

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0 2 4 6 8 10 12 14 16

frame size

pe
rfo

rm
an

ce

Figure 28. Performance vs frame size

 32

We can see that the frame size doesn’t matter as long as it’s larger than a certain
number which is in our case 9 requests. This is what we expected. For very small
size of frame the manager will delay the reconfiguration significantly because the
best service bS changes frequently causing reset of _cut losst .

Experiment 3:) 50as sμ= ,) 80ds sμ= , 20frame = , 50pt steps= , 10 runs of 10000

time steps each. We run for different tht from 50 to 7250 sμ . The result can be seen
in Figure 29.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 1000 2000 3000 4000 5000 6000 7000

tth

pe
rf

or
m

an
ce

Figure 29. Performance vs tth

We observe again that the value of tht is not important as long as it’s larger than
1000 sμ and smaller than 5500 sμ . If tht is too small, a reconfiguration will be
decided too frequently increasing performance losses. If tht is too large,
reconfiguration will get delayed resulting performance losses. We can see that the
performance for extremely small values of tht is bellow 0.5 which means worst than
having a selection at random. This is reasonable considering that with such a low tht ,
most of the time the service provider will be reconfiguring itself providing no speedup
at all. Obviously it’s worth having a large value of tht , in the order of reconfiguration
time pt .

Some final comments on the algorithm. The fact that we operate based on the last
frame requests acts like a low pass filter that smooths peaks on requests. The fact

that the threshold acts on the accumulated losst (_cut losst) makes the algorithm decide
faster a reconfiguration if it faces huge loss, or slower if the loss is small. For small
losses it may not be worth switching and suffering a cost of pt if you are not
guaranteed that the situation is permanent. Finally, although this algorithm is simple it
works quite well because it performs on high-quality information that represent
directly the structure of the problem and fortunately are available within the service
broker module.

 33

3.3 Implementation issues
Here we present implementation details for the most important communication
infrastructures at this moment; busses and network-on-chips. Advanced issues like
implementation on network-on-chips that support multicasting and connection with
off-chip networks are discussed in Appendix E.

3.3.1 On a bus based system (CoreConnect/Amba)
IBM’s CoreConnect and ARM’s AMBA are both standarized SoC bus interfaces. We
can see diagrams taken from their specifications [83-85] in Figure 30 and Figure 31.
They both feature a high speed bus (AHB/ASB, PLB) and a low speed buses (APB,
OPB/DCR) which get connected through bridges. Arbiters exist in order to manage
shared resources.

Figure 30. A typical AMBA system

Figure 31. CoreConnect block diagram

Core Services exist for providing acceleration and because communication costs are
very important (see 3.4.2) the only place for both the service broker and the service
providers is the high speed bus. For compatibility with NoCs the communication
between them is going to take place in a serial manner meaning that it uses a small
number of memory (or I/O) mapped registers as shown in Figure 32.

 34

 Service broker Service provider
Data register SB_BASE_ADDR [R/W] SPX_BASE_ADDR [R/W]
Status register SB_BASE_ADDR+1 [R] SPX_BASE_ADDR+1 [R]

Figure 32. Bus-based architecture registers

The registers are 32-bit long for the processor’s programming model even if they are
implemented in another way. Figure 33 saws the communications that occur on a
bus based system with Core Services.

Figure 33. Core Service mechanics on bus-based architecture

Phase I (service request) is initialized by reading the service broker status register
(SBSR) in address SB_BASE_ADDR (see Figure 34). This is the only place where
inter-processor synchronization is required since the service broker is capable of
serving only one processor a time.

MSB LSB
X R B

Figure 34. Service broker status register (SBSR)

If the broker is free, the B(usy) flag is clear and on the read transaction, the flag gets
set immediately (atomic operation). Then the requester can start writing word by
word the service request sequence (see 3.2.1.1) on the service broker data register
(SBDR).

The service requester then polls SBSR and waits until the R(eady) flag is set. Then it
can start reading the service assignment response (see 3.2.1.2) on the SBDR word
by word. The Provider Unique ID in the response packet is the base address
(physical) of the assigned service provider (SPX_BASE_ADDR). After reading the
last word, the service broker becomes available and the B(usy) flag gets cleared.

Phase II gets initialized when the service requester sends parameters by writing a
request packet (see 3.2.2.1) to each service provider’s data register (SPDR) in the
address SPX_BASE_ADDR+1. The Requester ID field holds a unique identifier that
may be used by the provider to issue an interrupt on the service requester when it
completes. If the platform allows multiple slaves to be active at the same time, which

 35

is highly unlikely, this feature could be used to reduce communication costs by
broadcasting the parameters.

MSB LSB
X D

Figure 35. Service broker status register (SBSR)

By polling the service provider’s status register (SPSR) (see Figure 35) the device
can know when the computation has completed by checking if the D(one) flag is set.
If an interrupt is being used, the interrupt is being cleared by reading SPSR. The
response packet (see 3.2.2.2) is being read serially word-by-word by the SPDR.
When the last word gets read the D(one) flag of SPSR gets cleared.

When the service completes the providers are registered as free by writing to the
SBDR a free resource packet (see 3.2.2.3). The same procedure as with service
request (Phase I) must be followed in order to assure atomic operation.

Some final notes. If a DMA master is present in the platform, it can offload the
requester from the communication with the provider by using the alternative path (2)
instead of (1) shown in Figure 33. Service broker’s transactions are small (a few
words), the waiting time is small and thus polling is used for communicating with it.
On the other hand the large time of computation of service provider makes interrupts
more attractive. If there is only one processor the service broker may be
implemented within it in software because there is no need of mutli-processor
management. Mind that it must be thread-safe.

3.3.2 On networks-on-chip
The two most well known Network-on-Chips are Æthereal [18, 86, 87] from Philips
and Xpipes [88]. Their mechanics are similar as described in [10] and their network
interfaces (NI) support similar core interfaces (OCP and OCP/DTL/AXI respectivelly).
We will assume that there exists a mechanism for sending an array of words (packet)
to a processing element unique identified by a number (IP) and a callback
mechanism gets invoked when a message with a certain IP is being received. An API
with only two functions can implement this mechanism:

noc_write(IP, PACKET_SIZE, PACKET)
noc_callback(PACKET_SIZE, PACKET)

This simple implementation assumes that the Core Services functionality is the only
usage of the NoC at least for the nodes involved. Obviously this is not reasonable but
it’s easy to enrich the two functions with a port parameter that allows the NoC to be
used for Core Services’ purposes only on a specific port number.

By using this API the implementation of Core Services is very easy because they
have been designed with NoCs in mind. As we can see in Figure 36 there is a limited
amount of IPs that are used by the mechanism.

Service requester Service broker Service provider
SR_IP SB_IP SPX_IP

Figure 36. IPs used by the Core Services on a NoC architecture

 36

Phase I (service request) is initialized by the service requester sending a service
request packet (see 3.2.1.1) to the Service broker (SB_IP). The Requester ID field of
the packet must be filled with service requester’s IP (SR_IP). There is no need of
synchronization as a service broker is receiving and serving only one packet at a
given time. Then service broker responds by sending a service assignment response
packet (see 3.2.1.2) to the requester by using the SR_IP form the request. The
Provider Unique IDs in this packet are the Service Provider’s IDs (SPX_IP’s).

Then the service requester can initialize Phase II by sending a request packet (see
3.2.2.1) to each SPX_IP. The Requester ID field of the packet must be filled again
with service requester’s IP (SR_IP). Then each service provider that completes
sends a response packet (see 3.2.2.2) back to the service requester by using SR_IP.
At the end service requester sends a free resource message (see 3.2.2.3) back to
the SB_IP to free the service providers.

3.4 What to make a Core Service?
Obviously no one wants to put engineering effort in making something a Core
Service without guaranteeing some performance benefits. Unfortunately the number
of factors that contribute to the acceleration is large and guaranteeing it is quite
difficult. However there are some theorems and observations that can help us define
what is a good candidate for a Core Service.

3.4.1 Estimating speedup margins
Fist of all there is Amdahl's law [89-91] that simply tells us that if we take a function
that takes up the 30% of the time and accelerate it 3 times (300% speedup) making it
taking 10% of the original total time we have a 25% total system speedup:

70% 30% 1.25
70% 10%

+
=

+

Even if we accelerated that function to take no time at all the system acceleration
would be 43%. Imagine the engineering effort that could be put on such a huge
acceleration on a single function with a moderate system-level result.

You can see the time spent in each function for our demo applications in the
following table. From a computational aspect, the AES encryption is more likely to
give higher performance benefits from a computational aspect.

Application Function Time spent in function
AES encryption rijndaelEncrypt 65%
Mp3 decoding synth_full 37%

Amdahl's law in a more formal form states the following:

() ()
1systemspeedup

1 P P S
=

− +

where P is the proportion of system performance spent on the function that we
optimize and S is the speedup that we achieve in that function.

This law allows us to estimate the available improvement margins and help us select
the best functions to optimize; the ones that take the most time. The problem is that it

 37

doesn’t tell us how much each function can get optimized in advance. This is a very
hard problem of algorithm analysis theory but there exist a thesis that can help. It’s
called parallel computation thesis.

The parallel computation thesis [92] states that if an algorithm uses s(n) storage in a
sequential machine, in a parallel machine, it can do the same s(n)k steps. More
formally it states that “the time on any “reasonable” model of parallel computation is
polynomially equivalent to sequential space” [93]. Even though evidences of its truth
have been given quite early [94], not much progress [95] has been made in recent
years for a formal proof.

If we want to paraphrase it a little we can tell that the more extra memory a
sequential algorithm uses, the more time it takes on a parallel computer. We are
referring to parallel computation because hardware accelerators increase
performance by utilizing parallel resources (multipliers, lookup tables etc.). Hardware
engineers can intuitively understand that parallel computation thesis is true
considering that large memory requirement usually means a lot of state overhead
that prevents parallelism.

The worst case of code one can face is the inherently sequential code. This is code
that can’t get parallelized. Some examples of these kinds of codes are [96]:

• code protected by mutual exclusion in some manner
• conditional critical regions
• monitors
• barriers

In [97] a model is being presented able to classify algorithms as inherently sequential
and it's being used to prove that some graph algorithms are inherently sequential.
Obviously it’s not worth trying to accelerate an algorithm that is inherently sequential.

Practically code segments that can easily get accelerated usually include lookup
tables (e.g. state machine implementations, string matching– regular expressions),
integer calculations, data intensive mathematical transforms, operations with bit-level
manipulations or non-multiple of 8 bit data (e.g. LFSRs) or vector operations.
Potential benefits also exist in “FOR loops” with few “IFs” inside.

Warning! Control oriented segments of code
(e.g. with a lot of error handling - exceptions,
many ifs with variable operands) should be
avoided for acceleration.

It should be kept in mind that embedded processors have highly optimized
datapaths, efficient caches and usually run on a much higher speed than local buses.
In order to anticipate the communication costs, the hardware acceleration has to be
massively parallel. Faster interfaces like Xilinx’s Auxiliary Processor Unit (APU)
controller may lessen in the near future the communication costs and broaden the
acceleration margins.

3.4.2 Estimating communication overhead
As presented in [98] the communication costs on a high-performance reconfigurable
environment can easily become the performance bottleneck. What they propose as a
solution is a pipelining between computation and communication. In [51] they
propose to increase the granularity of the hardware accelerated functionality until you

 38

have acceptable levels of communications. This is usually not an option because of
the engineering effort it required. Other more advanced techniques like compression
could also be worth trying. Although Core Services don’t prevent, they also don’t
enforce the use of any of those techniques. The problem of communication remains
and has to be carefully justified to ensure acceleration.

The first problem is that data has to get transferred from the service requester to the
service provider. The main argument is that the core would have to read these data
anyway, so it’s not a pure overhead. The way that an efficient core will send data to
the service provider is with a loop like this:

1: LOOP: REG <- [DATA++]
2: [SERVICE] <- REG
3: JMP DATA!=SIZE LOOP

In most cases core’s speed is higher than the bus’s speed and thus instruction 2 is
the main bottleneck. Instruction 1 may come at free in the (highly likely) case that the
data are in cache and would be read by the algorithm anyway. Instruction 3 is
negligible especially in the large data transfers we are interested in because the
branch is going to be predicted successfully.

A second problem is that the state of the system that is being used by the function
must be transferred for each call because Core Services are stateless. Hopefully in
most stream operations that are more likely to be chosen for acceleration the amount
of state is limited. But it exists. For example, in order to use the AES encryption
service we have to send 52 words of key data just to encrypt 4 words of plaintext
which if you multiply with the number of calls means that we have to transfer 141Mb
of state overhead in order to encrypt an 11Mb long file. We can see in the table
bellow statistics on the execution of the two different applications on the same file.

Application Function Calls
AES encryption rijndaelEncrypt 710475
Mp3 decoding synth_full 14340

In functions with a large number of calls the communication cost and more
specifically the state overhead must be careful considered before making them Core
Services. Hopefully this overhead is easily predictable for a given platform. Even in
the case of Core Services over NoC, the average and worst case latencies can be
accurately predicted as shown in [99].

There are solutions for the communication overhead. Using DMA transfers takes
away the load of transferring from the process requester. This is useful only if the
process requester has something else to do in parallel i.e. runs multiple processes.
The drawbacks are that DMA masters take silicon area and lower performance by
stealing bus cycles from the processor as presented in [100].

In general the best solution is to map variables that have to be shared with the co-
processor to a fast scratch-pad memory. Xilinx OCM-interface for example is
traditionally [101, 102] being used for this purpose. By mapping variables there you
don’t have to move them at all as computations can be done in-place. Both PowerPC
and hardware accelerators have single-cycle access in those bi-directional block
RAMs. Use of these memories is not supported natively by Core Services. We must
note that different processes will have to compete for these scarce resources and
explicit compiler and operating system support has to exist for using them [103].

 39

3.4.3 Other aspects
A service provider is allowed to call other Core Services but this feature is highly
unlikely to be used in practice because it decreases performance. As a result, a
function that has chances of being accelerated must be leaf function i.e. not call any
other function.

In some cases, a block in a function needs acceleration while the rest is extremely
awkward and inefficient to accelerate e.g. uses a lot of system’s space. In these
cases, we have to refactor the code slightly and create a function with the block that
is efficient to accelerate.

In most of cases readily available software code is hard to parallelize. In [38]
Microsoft’s chief researchers admit that “leveraging the full power of multicore
processors demands new tools and new thinking from the software industry” and
they do so in September 2005 when multi-processor cores have already widespread!
Writing hardware-friendly software will become a necessity in the next years but until
then hardware engineer’s job will be hard. Stream processing [104, 105] software is
naturally hardware-friendly software and might be an appealing option.

Finally, reconfigurable hardware resources are not infinite. As a result experience
and a lot of exploration should be used to solve the trade-off between acceleration
and hardware resources, which in some cases will mean lower clock rate and higher
power consumption. As demonstrated in [106] with look-up table based decoders
found in the JPEG and MPEG protocols the parallel/serial trade-off can be attacked
systematically and give efficient results.

 40

Chapter 4. Implementation on a reconfigurable
platform
First we will present the implementation of Core Services’ framework on this platform
(section 4.1) and then demonstrate its usage with the two applications, AES
encryption and mp3 decoding (section 4.2).

4.1 Implementation of Core Services on Xilinx’s platform
An overview of the Xilinx tools and design flows is being provided in Appendix A.
Here we will concentrate on the hardware (section 4.1.1) and software (section 4.1.2)
components and the Service Builder (section 4.1.3) used by our Core Services
implementation.

4.1.1 Hardware components
A hardware stack has been implemented that abstracts the underlying bus
implementations and thus makes the design more portable while at the same time
reduces the design time. These designs are fully customizable through a single
package (array_types see Appendix B.1) and use extensively generics and generate
statements in order to adapt to user requirements. This allows easy customization by
the Service Builder platform builder (see section 4.1.3).

Figure 37. The Core Services' hardware stack over Xilinx's stack

In Figure 37 we see the Core Services' hardware stack over Xilinx's stack. The first
level, closer to the PLB bus is the Service Inteface level that handles the
communication according to the Core Service’s protocol. This is actually a state
machine shown in Figure 38 and its VHDL interface can be found in Appendix B.2.
This state machine is able to parse the input packets and generate output packets
from/to the processor. It creates signals that are suitable for memory like peripherals
by providing the Variable Number, equivalent to Chip Enable (CE), the Word
equivalent to the Address, the Data and the variable_valid which is equivalent to
Write Enable (WE). Some other signals are also used but in many cases they are set
to constants. Service Interface handles also protocol-side fault tolerance by featuring
the appropriate states into its state machine. It doesn’t calculate CRC’s itself because

 41

in the case of a bare packet (packet where only CRCs are being sent) computation
results are not read at all by the Service Interface and only CRCs are requested from
higher levels.

Figure 38. The Service Interface state machine

At the higher level we have the Default Variable Manager component which we can
see in Figure 39 and its interface in Appendix B.3.

Figure 39. Default Variable Manager

The Default Variable Manager is exactly what the Service Interface would expect to
see from component’s side. A set of memories, one for each input and output
parameter. For each variable at least one Block Ram is being used even if it is one
byte long. This is not a problem because plenty of Block Rams are available in every
Virtex II FPGA and gives us a significant advantage; a word from each input and
output variable can be accessed within a single clock cycle from higher levels. The
way that memory and processing speed trade-off has been resolved in our case is

 42

simple but must be suitable for most Service Providers. Of course if something more
advanced is required, one can override this level and implement its own variable
storage layer (this is what we did for our applications as you can see in the following
sections). This component uses heavily GENERATE blocks in order to provide all the
customization that is needed regarding the number and size of input/output variables.
The interface that it provides to the processing element is that of a master processing
element i.e. a processing element that generates addresses for the memories and
expects or writes data from/to them.

Exactly that’s what Default Services are as we can see in Figure 40 and Appending
B.4.

Figure 40. Default Services' Interface

Default Services are provided by the framework as a default implementation that
makes vector addition and is useful as a template to rapidly implement new
functionalities. Default Services provides a very powerful interface to the processing
elements. The power of this interface lies on its simplicity. With Default Services we
have the exact equivalent of a software function in hardware. All the input and output
variables of the function are available at this level on the hardware and there are no
platform dependent signals at all (apart from a single checksum - see Appendix D.1).
At this abstraction level the component is really reusable but more importantly this is
the hardware abstraction level from which many C to RTL tools start to operate.
Obviously this is an important benefit of our framework for realizing accelerated
hardware/software co-design flows.

4.1.2 Linux Device Driver and the API
From software side an equivalently large contribution has been made.

Figure 41. Core Services' software stack

As we can see in Figure 41 and Figure 42 Core Services are implemented with a
Linux Driver and an API. There are certain reasons that have influenced these

 43

partitioning. Our platform uses only one PowerPC processor and thus Service Broker
need not be external to our device. However, we want our API to be able to work
consistently in cases where the Service Broker is external and that’s why we have
wrapped the service broker within the Linux Driver. This driver provides the API with
no more functionality than the one that would be available if the Service Broker was
external to the device. The Device driver is also needed to provide I/O operations to
our platform. Due to memory protection of Linux, direct I/O operations are not
allowed from user space which means that our API can’t directly access the bus and
the Service Broker or any of the Service Providers (Actually this may be done by
using ioperm() but it’s very slow and bad practice in general). I/O operations directly
affect the performance of the system (see appendix D.2).

Figure 42. Layers and implementation files. Shaded files are platform specific.

The device driver consists of several files and is written again with a generic way.
Platform dependent parameters like the number of Service providers, number and
IDs of services, performance costs, input output variables e.t.c. are contained in
platform.c and platform.h which allows easy customization from the Service Builder
GUI (see section 4.1.3). In the development of the driver precious help was given by
the Linux Device Drivers book [107]. It was initially prototyped under SUSE 9.2
(Kernel 2.6) and then ported to MontaVista Linux (Kernel 2.4) with admittedly less
trouble than we expected.

/dev/csbroker
ioctl() operations:
1. CS_BROKER_REQUEST
2. CS_BROKER_FREE

/dev/cs0 (example: AES accelerator)
/dev/cs1 (example: reconfigurable accelerator)
/dev/cs2 (example: mp3 accelerator)
…

read()/write() operations

Figure 43. The interface provided by the Device Driver

The driver provides the interface shown in Figure 43 to the applications. The device
/dev/csbroker is the Service Broker and provides the two functionalities discussed in
section 3.2.1. Then for each Service Provider, a device is being added in the form
/dev/csX where X is an increasing integer number. Which provider corresponds to
which hardware component is insignificant since the broker is aware of the sequence
and returns adjusted Provider identifiers.

 44

The API provides two levels of functionality. The lower level implements the
communication with the Service Broker and the Service Providers. At this level the
developer has full control over the actual sequencing of operations like requesting
resources and releasing them but must be aware of Core Service’s mechanics. An
experienced developer can fine tune performance by using the low level API. The
high-level API consists of one function declaration for each Service with exactly the
same form as described in the Service Builder (see section 4.1.3) and an additional
redundancy parameter for Services that require fault tolerance. Obviously the high
level API provides a great level of abstraction of the underlying hardware and Core
Services’ mechanics making development easier and faster.

4.1.3 Service Builder platform generator
As we saw in the previous sections there are various parameters that have to be set
on C and VHDL configuration files. Recognizing that customization effort could be a
significant disadvantage of the Core Services’ methodology we implemented the
Service Builder tool in JAVA that one can see in Figure 18 in page 18. With this user-
friendly tool the developer can customize all the aspects of Core Services’ platform
and then all the files are going to be created for him. More specifically one directory
is being created for each Service Provider including its VHDL sources customized
and ready to be imported to the XPS. Another folder is being created for the software
part providing both the Linux device driver and the API customized and ready to get
compiled with PowerPC’s gcc. This tool significantly simplifies the amount of
knowledge needed to apply Core Services and prevents errors thus reducing the
development time.

4.2 Applying the methodology on the two demonstration
applications

We will now apply this methodology on the two demonstration applications. In each
step the process will be described for each of the two applications, AES encoding
and mp3 decoding. This way similarities and differences can get highlighted. AES
encoding is being done with version 0.7 aescrypt [108] and mp3 decoding is being
done with version 0.15.1b of libmad [109]. Testing of the latter is performed with
minimad application which comes with the libmad.

Step 1. Profile the system and sort its functions by the total amount of time
spent on each.

We performed this step for both applications on a PC by using gprof. Then we
verified that the same profile holded true with PowerPC–generated traces examined
with the cross-compiled gprof. Both applications were profiled with the same input
data (the same mp3 file got decoded and encrypted). The profile for the AES
encryption is the following:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 65.09 1.10 1.10 710475 0.00 0.00 rijndaelEncrypt
 27.22 1.56 0.46 1388 0.33 0.33 cryptblock
 7.69 1.69 0.13 blockEncrypt
 0.00 1.69 0.00 1389 0.00 0.00 ewrite
 0.00 1.69 0.00 1 0.00 0.00 aes_set_key

The profile for the mp3 decoding is the following:

 45

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
32.05 7.30 7.30 14341 0.00 0.00 synth_full
 19.53 11.75 4.45 14341 0.00 0.00 output
 10.36 14.11 2.36 57364 0.00 0.00 III_huffdecode
 9.79 16.34 2.23 1500278 0.00 0.00 III_imdct_l
 9.53 18.51 2.17 1032552 0.00 0.00 dct32

We can see that these applications have different difficulties. The first one is slow
because rijndaelEncrypt is called too many times and is computationally intensive
whereas the second one is slow because synth_full is just computationally intensive.
We expect increased communication costs on the first case because of the large
number of calls. We also see that the first one offers better potentials of system-level
optimizations according to Amdahl's law because 65% of the time is being spent on
it.

Step 2. Decide if they are suitable for hardware implementation.

We can see the source code for the two functions on Appendix C.2 and C.3. It is
quite difficult to understand how exactly these functions work because they have
been identified as performance bottlenecks by software developers and thus
optimized (and made cryptic) in several ways. This would make the life really difficult
for an automated C to RTL tool. These functions are also almost not documented at
all. After some careful examination and several test runs the functionality became
clear.

The function rijndaelEncrypt takes an input parameter and xors it with a key for each
round. Then it uses each byte of the result to index four different tables T1-T4 which
contain the same elements but permutated with a complex way. Then they take the
results of those four tables and xor them together producing the output parameter
which is used as input parameter for the next round. This operation is being repeted
11 times for 128-bit key. The software developer has optimized the implementation
by excluding from the main loop the first and the last rounds that are slightly simpler.
As a result we have a complex operation repeated 11 times using constant tables
with minor exceptions. In other words; ideal for acceleration.

The function synth_full is not so ideal. First of all it calls another function, the DCT32.
That is not a performance bottleneck so there is no need to implement it in hardware.
The rest of this function (after DCT32) gets called 2 channels x 36 samples x 14341
calls = 1032552 times and according to profiling it takes on the PowerPC 75μs/call
which translates to 8300 clock cycles. By inspecting the source code one can easily
see that there is a lot of complexity with many special cases etc. If we calculate the
amount of data that has to be transferred we will see that there are: 16xfo tables =
128 words, 1xfx tables = 8 words, 16xfe tables = 128 words, + return 32 words. This
means in total 296 words = 5920ns in a 100MHz bus cycle with transfer efficiency of
2cycles/word. Obviously we can save about 15μs with a fast implementation which
means 250% function speedup and 25-30% system performance increase according
to Amdahl's law.

The problem is that the hardware will have to be complex because we need a state
machine able to do all the pointer management. This way the clock cycle might be
needed to be lowered and silicon space would be wasted to run sequential code that
could run more efficiently on the processor. In order to overcome these drawbacks
we apply Core Services in finer granularity. We can see that the code in the function
uses actually a single computational primitive two times. The primitive:

 46

 ML0(hi, lo, (*fo)[0], ptr[0]);
 MLA(hi, lo, (*fo)[1], ptr[14]);
 MLA(hi, lo, (*fo)[2], ptr[12]);
 MLA(hi, lo, (*fo)[3], ptr[10]);
 MLA(hi, lo, (*fo)[4], ptr[8]);
 MLA(hi, lo, (*fo)[5], ptr[6]);
 MLA(hi, lo, (*fo)[6], ptr[4]);
 MLA(hi, lo, (*fo)[7], ptr[2]);
 MLN(hi, lo); // Optional
 MLA(hi, lo, (*fe)[0], ptr2[0]);
 MLA(hi, lo, (*fe)[1], ptr2[14]);
 MLA(hi, lo, (*fe)[2], ptr2[12]);
 MLA(hi, lo, (*fe)[3], ptr2[10]);
 MLA(hi, lo, (*fe)[4], ptr2[8]);
 MLA(hi, lo, (*fe)[5], ptr2[6]);
 MLA(hi, lo, (*fe)[6], ptr2[4]);
 MLA(hi, lo, (*fe)[7], ptr2[2]);

*pcm1++ = SHIFT(MLZ(hi, lo));

or in other words:

[] ()() [] ()()
7

0
1 16 0 16

i
fe i ptr g i fo i ptr f i

=

⎡ ⎤ ⎡ ⎤⋅ >> ± ⋅ >>⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦∑

So lets see what we have if we make this primitive a Core Service. We have to
transfer 1xfe table = 8 words, 1xfo table = 8 words and return 1 word. This means 17
words = 400 ns with similar conditions as before. This primitive is being called 32
times in each synth_core which means that it takes 75μs/32=2.3 μs. This means that
with an efficient implementation we can have a speedup of 160% which translates to
a system speedup of 15-20%. Now comes the important part. This implementation
uses 296/17=17 times less memory than the previous implementation and also has
significantly simpler control logic. We can pessimistically estimate that this
implementation is half the size of the previous one. As a result we can fit roughly two
such modules in the same area. In a heavy loaded multi-threaded or even better
multi-processor environment this means 30-40% increase in system’s performance.
This module is also significantly easier to create and verify. This is an example of the
conclusion drawn in section 3.4.3. There is a trade-off between hardware and
acceleration is difficult to identify and optimize.

Step 3. Replace with service calls and provide default service implementation.

This was as easy as replacing the original code segments with function calls with the
primitives provided by our Core Services’ platform. Some variable renaming was
required and some attention in modifying variables in a similar way as the original
implementation. For example in case of mp3 decoder the variable pcm1 was
increased 16 times inside the loops and by using the function these increases were
not reflected back to the original variables (call by value). Thus we had to add
manually a pcm1+=16 instruction.

Step 4. Test the software only implementation on the platform.

The software only implementation was tested successfully after fixing minor errors
described in the previous step.

 47

Step 5. Calculate the estimated savings of making a hardware accelerator for
this function. If constrains aren’t yet met, accelerate more functions.

This step aims on industrial applications. In our case we assume that accelerating
only the two functions described before satisfies the performance constraints for our
system.

Step 6. Create hardware test data.

This step got performed manually by modifying slightly the Core Service’s
implementation to save function call’s data on a file with a VHDL-friendly manner.
Future Versions of Core Services may further automate this step by automatically
creating VHDL testbenches.

Step 7. Create hardware instance of Core Service using automatically
generated service stack and verify with the test data.

The Hardware templates generated by Core Services were used as a starting point
for our hardware component device. We decided to customize them by going down
to Service Interface level discarding the Default Variable Manager and the Default
Service components in order to increase performance and minimize area. By doing
so we implemented custom 128-bit wide variables required by the AES algorithm in
order to increase performance by accessing more data simultaneously. We also
saved memory (area) on the mp3 component because we avoided storing the data
on memories completely. Data are being used as soon as they arrive. We also save
time with this technique making the component having virtually an impressively small
computation time of just 3 clock cycles after the last word arrives!

Figure 44. AES accelerator block diagram

The block diagram of the AES component can be seen in Figure 44. Each T-Table is
being implemented efficiently by a ROM which translates to a Block Ram on the
FPGA. A simple state machine tunes the whole system which is able to complete the
block encoding in less than 100 clock cycles. The synthesized core including Core
Service’s interface uses roughly 3% of the FPGA.

 48

Figure 45. Simulation of the AES accelerator

We can see in Figure 45 a simulation of the AES component. It’s impressive that
even in this ideal case where one word is being transferred at each clock cycle,
communication is almost as time consuming as the computation. By using the bus,
about 10 clock cycles are being used for each word transfer which means ten times
longer communication.

In Figure 46 we can see the block diagram for the mp3 decoder. This component is
more complex than the AES encoder because it is a pipelined implementation. The
32x32 bit hardware multiplier was created by using Xilinx’s Core Generator tool and
features 5 stages of pipeline internally. In order to access the –synchronous read-
constant table that holds the multiplication coefficient (second operant of the
multiplication) we need another pipeline stage. Tuning these pipeline stages requires
a carefully coded state machine because input data will not arrive in each clock cycle
thus input handshaking must be used to stall the pipeline. This implementation
completes as we mentioned before in 3 clock cycles and it uses roughly 4% of
FPGA’s area.

Figure 46. MP3 accelerator block diagram

Computation Communication Commu.

 49

Figure 47. Simulation of the MP3 accelerator

In Figure 47 we can see simulation of the MP3 accelerator. The unequally distributed
pulses are the data-ready signals for our design. By providing data with varying rate
we verify that the pipeline works correctly. We can see that as soon as the final data
arrives the computation completes as expected.

Step 8. Calculate the actual savings of making a function Core Service. If the
constrains aren’t yet met, create more hardware components or optimize more
the existing ones.
As in step 5 this step aims on industrial applications. In this case we assume that
performance constraints are met. The benchmarking results are presented in section
5.1.

Step 9. Test the software/hardware implementation on the platform.

Some inconsistencies were found at this level. Because the original test vectors were
created under windows on a little endian machine whereas the final implementation
was running on a big endian machine (PowerPC) there was a slight incompatibility on
the AES module. This of course doesn’t mean that C is not portable. The compiler
used to issue warnings about incompatible pointer assignments but the original
application was not designed with cross-platform compatibility in mind. With slight
modifications we converted AES accelerator to big endian and the design completed
successfully.

End of data transfer
Computation finished

 50

Chapter 5. Evaluation and future work

5.1 Benchmarking and results

We created a system with the following components (see Figure 48); a PowerPC, an
AES accelerator, an mp3 accelerator and an (emulated) reconfigurable component
able to provide both the mp3 and the AES services.

Figure 48. Test system configuration

By using an XPS project we had verified at step #8 of the methodology that hardware
implementations, including communication costs were almost three times faster than
software implementations (see Appendix D.3). After moving to the Linux environment
and by using read/write system calls hardware efficiently was dramatically reduced
and software calls became slightly faster than hardware calls. We propose later in
this chapter ways to improve this performance. We delayed artificially the software
function calls in order to retain the context of “hardware acceleration”. As we
mentioned in section 2.4 hardware implementations are not always faster than
software if you examine them on a realistic context including communication costs,
caches and higher clock frequency of the processor.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

AES (1) AES (2) AES (3) MP3 (1) MP3 (2) MP3 (3) MP3 (4)

Figure 49. Performance over time with accelerators inactive

 51

In order to evaluate the performance of Core Service’s implementations we use a
realistic test case. We run three AES encoding and four MP3 decoding instances
concurrently. We start one process after another such as transient behaviour can
also be studied. We use a utility that we created to measure the throughput. We find
the maximum throughputs and then normalize our datasets according to them. The
results can be seen for accelerators inactive in Figure 49 and with accelerators active
in Figure 50.

Performance vs Time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

time

pe
rf

or
m

an
ce

AES (1) AES (2) AES (3) MP3 (1) MP3 (2) MP3 (3) MP3 (4)

Figure 50. Performance over time with accelerators active

What we actually see is the combined effort of Linux scheduler and Core Service’s
functionality and that explains the noisy measures. At the beginning we can see the
run of the three AES processes. When first AES gets loaded it has the complete
focus of the system so it runs on its maximum performance. We can see that in
accelerated form it gives 100% of system throughput while in non-accelerated form it
gives only 50% of system throughput because software implementation is slower.
Then when a second and the third AES process runs in the non-accelerated case
Linux’s scheduler works on a round-robin fashions and cycles the focus of the
processor on each process giving that saw-like profiles (blue, pink, yellow in figure
Figure 49). When we have accelerators enabled we can see a completely different
profile. When the second and the third AES processes run they all provide the same
throughput no matter system’s load. This is because hardware acceleration makes
computations complete faster and thus scheduler’s round robin is smoothed out
providing the expected; independent acceleration to all the processes. In the same
manner if we had a multi-processor system all the cores would get equally
accelerated.

When mp3 processes run we don’t get the result we would expect at first-level. We
see that in the non-accelerated case we have slightly higher throughput. This is not
so unexpected. Linux’s scheduler realizes that the AES function is slow and gives
priority to the mp3 service. By examining Figure 49 it is clear that mp3 processes
“steal” performance from AES encryption. We will show later that despite “stealing”
system’s performance is superior in the accelerated case. What is also clear is that in
the accelerated version there is no visible degrade on AES or MP3 process’s

 52

performance no matter how many processes we are running. In the steady state,
every process seems to give 50% of its peak performance.

Total Performance VS Time

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

Time

To
ta

l P
er

fo
rm

an
ce

All Active All Inactive

Figure 51. System’s performance with active/inactive accelerators

We can see an overview of total performance of the system for these two cases in
Figure 51. There is the 3 point moving average of the sum of performances for each
case. It’s clear that the accelerated version outperforms the non-accelerated
especially in the case where we expected it to exceed; a heavily loaded system.
Future systems will be heavily loaded not by multiple processes but from multiple
processors that will have to compete for the acceleration resources and we can see
that Core Services can successfully handle this case.

5.2 Summary
In this dissertation we proposed a new design methodology for multiprocessor
system-on-chips inspired by the widely adopted Web Services technology. We
specified its mechanics by the means of communication protocols and algorithms
and we validated the algorithms with simulation models. Then we described in detail
the means in which these mechanisms can be implemented in platforms with
communication infrastructures like busses and network-on-chips. Communication
protocols were designed with NoCs in mind and thus they have a straightforward
efficient implementation on NoCs.

Then we implemented the hardware and software components that are needed for
applying this methodology on Xilinx high-end FPGA’s platform. More specifically we
developed hardware components for communication, data management and function
layers that accelerate the design and abstract the underlying bus topology making
the component significantly more reusable. We also developed software components
including Linux device drivers and two-level API’s that make hardware readily
available to software designers with minimum effort. The higher level API completely
hides the hardware and application’s software is actually unaware whether the
function is being run on hardware or software. We also developed a JAVA application
for automatically generating these software and hardware components customized to
our current application’s needs as described on our Graphical User Interface.

 53

Obviously the development time for future accelerators on this platform using Core
Services will be much shorter by using the Core Services Builder.

Finally the methodology and the platform got verified by applying it to two
applications, AES encryption encoding/decoding and mp3 decoding with different
levels of granularity. On AES encryption the most time-consuming function was
accelerated while in mp3 a sequence of frequently used operations of the most time-
consuming function was accelerated. This way we kept the control-intensive
operations on the PowerPC and all the data-intensive operations on the hardware
accelerators as hardware/software co-design suggests. The two applications were
run on a hardware platform consisting of one AES Service Provider, one mp3 Service
Provider and one composite Service Provider able to provide both functionalities and
treated as reconfigurable component and profiles of throughput on complex test
cases were created.

5.3 Conclusion and future work
The key message of this dissertation is clear: Communication costs are of major
importance on current and even more future SoCs. The fact that cores and their
caches run many times faster than their local busses makes I/O operations
significantly more expensive compared to simple CPU operations like arithmetic
operations. Hardware acceleration is thus getting increasingly difficult to achieve and
can be beneficial only with accelerators with large granularity. These cores impose a
large level of control functionality and also have significantly large development cost.
Obviously this is not what hardware/software co-design promises. C to RTL
compilation tools may shorten design cycles by transforming the high-level
behavioural specifications on the form of C functions to hardware descriptions. The
first generation of these tools may produce significantly sub-optimal designs in terms
of performance and area but the shorter development cycle may make industry adopt
these tools rapidly at least for producing initial designs that may be further optimized
manually.

The other viable solution for hardware acceleration is on very fine granularity by
customizing processors’ instruction set. Realizing the problems of coarse grained
acceleration Xilinx added another interface on the Virtex 4 and latter devices, the
Auxiliary Processor Unit (APU) controller which interfaces directly the CPU pipeline.
By using it the designer can extend the instruction set of the PowerPC by creating
application specific instructions. The bandwidth provided by the APU controller is
much higher than the processor itself transferring up to 16 bytes of data in each
instruction. This is a very promising interface and may offer new opportunities for
reconfigurability as well because small instruction-level operators feature smaller
bitstreams and thus shorter reconfiguration time. The main problem with this
interface may be in its software-side integration because most of the compilers
assume a fixed instruction set. Interfacing CPU’s pipeline may also make debugging
difficult and may impose a complex hardware-side interface. It is interesting to
explore practically this interface and explore its capabilities and is certainly one of the
subjects of our future work.

Another very important subject for future work is the increase on the performance
between hardware and software interface. We saw that despite the fact that
hardware computation completes rapidly, the communication overhead is the
bottleneck that makes hardware implementation less efficient than software
implementation. Given that we use the fastest bus available and many optimization
techniques have been applied in our source code we should consider current
implementation as very good. There are still a few more hardware/software interfaces

 54

that can be evaluated and might give better results. A memory-like interface for the
Service Provider might enable the use of the burst mode of the CoreConnect bus
between the cache and the component. The implementation may be complex and
performance improvements are not guaranteed but it is worth exploring. Another
possibility is using the Direct Memory Access (DMA) mechanism and especially on
the scattered mode provided on the latest XPS (8.2i). This will release the processor
from the load of transferring data to the component and is well supported by Linux
(see Chapter 15 in [107]). Using DMA will probably accelerate very large data
transfers but it won’t provide acceleration on most other cases which are more
frequent. Perhaps Xilinx’s Core Services implementation should be extended to
employ transparently different communication techniques depending on the amount
of data transfer required by each Service. Another issue that could be explored is
Linux driver to application interface. Now reads/writes on character devices are being
used for communication with Service Providers. Network and block driver interfaces
could also be explored as well as the ioctl interface that reduces the number of
required system calls to one instead of two per service request.

At higher level an implementation of Core Services on a NoC platform would provide
interesting insights both on NoCs and Core Services. Core Services define one of the
first protocols that aim on NoCs and it is interesting to verify that the approach taken
actually fits well current NoC implementations. It is also interesting to see how
various NoC characteristics such as connection setup and round-trip time affect the
performance of the protocol. By studying communication characteristics like for
example frequency of requests and packet sizes of Core Services one can set
realistic requirements on the design of a NoC implementation. The traffic that Core
Services produce is not an estimation but the actual traffic that will be required from
the NoC.

In terms of reconfigurability there are not a lot of issues that need to be verified.
When tools will allow easy creation of partial bitstreams and perhaps reconfiguration
time becomes shorter (Virtex 4 supports 8 times faster reconfiguration [110]) it will be
straightforward to use Core Services with reconfigurable components. The emulation
of reconfiguration that we use is equivalent at functional level with true
reconfiguration and thus verifying it is interesting just as a proof of concept. In
appendix A.2 we give many useful references that will help such an attempt.

Further exploration of the applications of Core Services and usability of the Service
Builder platform generator is very important. The limited set of applications that we
implemented is sufficient to prove that Core Services work but may not have
revealed us the full set of requirements that applications have. The fact that the port
of the two applications and the design of the framework were performed by the same
person may have made the framework slightly over-designed for those applications.
The original codes for the applications came from different sources and both coding
styles and computational requirements are quite diverse thus the framework is quite
general. Porting more applications will undoubtedly reveal interesting extensions to
the Core Services framework.

 55

References

[1] Gordon E. Moore, "Cramming more components onto integrated circuits,"

Electronics, vol. 38, no. 8, 1965.
[2] Industry Association, "International Technology Roadmap for

Semiconductors: 1999 Edition," presented at International Sematech, Austin,
Texas, 1999

[3] Ahmed Amine Jerraya and Wayne Wolf, "Why MPSoCs?," in Multiprocessors
Systems-on-Chips: Morgan Kaufmann Publishers, 2005, pp. 1-18.

[4] Mary Jane Irwin, Luca Benini, N. Vijaykrishnan, and Mahmut Kandemir,
"Techniques for Designing Energy-Aware MPSoCs," in Multiprocessors
Systems-on-Chips: Morgan Kaufmann Publishers, 2005, pp. 21-48.

[5] Sujit Dey, Kanishka Lahiri, and Anand Raghunathan, "Design of
Communication Architectures for High-Performance and Energy Efficient
Systems-on-Chips," in Multiprocessors Systems-on-Chips: Morgan Kaufmann
Publishers, 2005, pp. 187-222.

[6] J. Hu, G. Chen, M. Kandemir, and N. Vijaykrishnan, "Software Power
Optimisation," in System On Chip: Next Generation Electronics, B. M. Al-
Hashimi, Ed., 2006, pp. 289-316.

[7] Richard Goering, "Platform-based design: A choice, not a panacea," in EE
Times, 2002, [Online]. Available:
http://www.eetimes.com/reshaping/platformdesign/OEG20020911S0061.

[8] L. Benini and G. De Micheli, "Powering Networks on Chip," presented at ISSS
- International System Synthesis Symposium, 2001, October, pp. 33-38.

[9] L. Benini and G. De Micheli, "Networks on chip: a new paradigm for systems
on chip design," presented at Design, Automation and Test in Europe
Conference and Exhibition, 2002, March pp. 418-419.

[10] Luca Benini and Davide Bertozzi, "Network-on-chip architectures and design
methods," in System On Chip: Next Generation Electronics, B. M. Al-Hashimi,
Ed., 2006, pp. 589-624.

[11] J. Nurmi, "Network-on-Chip: A New Paradigm for System-on-Chip Design,"
presented at International Symposium on System-on-Chip, International
Symposium on System-on-Chip, 2005, pp. 2-6.

[12] K. Virk and J. Madsen, "A system-level multiprocessor system-on-chip
modelling framework.," presented at International Symposium on System-on-
Chip (ISSoC), Tampere, Finland, 2004, Nov.

[13] Luciano Bononi and Nicola Concer, "Simulation and analysis of network on
chip architectures: ring, spidergon and 2D mesh," presented at Design,
Automation, and Test in Europe 2006

[14] Doris Ching, Patrick Schaumont, and Ingrid Verbauwhede, "Integrated
Modeling and Generation of a Reconfigurable Network-on-Chip," presented at
18th International Parallel and Distributed Processing Symposium
(IPDPS'04), 2004, pp. 139b.

[15] M.P. Vestias and H.C. Neto, "Co-synthesis of a configurable SoC platform
based on a network on chip architecture," presented at Asia and South
Pacific Conference on Design Automation, 2006, Jan.

[16] T. Hollstein, H. Zimmer, and M. Glesner, "Dynamic hardware/software co-
design based on a communication-centric hyper-platform," presented at The
16th International Conference on Microelectronics, 2004, Dec., pp. 355-358.

[17] OpenCores organization, "WISHBONE System-on-Chip (SoC)
Interconnection Architecture for Portable IP Cores, Revision: B.3," pp. 98,
2002, September 7.

 56

[18] Andrei Radulescu, John Dielissen, Santiago Gonzalez Pestana, Om
Gangwal, Edwin Rijpkema, Paul Wielage, and Kees Goossens, "An Efficient
On-Chip Network Interface Offering Guaranteed Services, Shared-Memory
Abstraction, and Flexible Network Programming," presented at IEEE
Transactions on CAD of Integrated Circuits and Systems, 2005, January, vol.
24(1)

[19] Jawad Khan and Ranga Vemuri, "Battery-Efficient Task Execution on
Reconfigurable Computing Platforms with Multiple Processing Units,"
presented at 19th IEEE International Parallel and Distributed Processing
Symposium 2005, vol. 4, pp. 155.

[20] S. Evain and J.-P. Diguet, "From NoC security analysis to design solutions,"
presented at IEEE Workshop on Signal Processing Systems Design and
Implementation, 2005, Nov., pp. 166-171.

[21] Michalis D. Galanis, Athanasios Milidonis, George Theodoridis, Dimitrios
Soudris, and Constantinos E. Goutis, "A Framework for Partitioning
Computational Intensive Applications in Hybrid Reconfigurable Platforms,"
presented at International Parallel and Distributed Processing Symposium
2005

[22] G. Dimitroulakos, M. D. Galanis, and C. E. Goutis, "Performance
improvements using coarse grain reconfigurable logic in embedded SoCs,"
presented at Field-Programmable Custom Computing Machines CA, USA,
2005, pp. 630-635.

[23] M.D. Galanis, A. Milidonis, G. Theodoridis, D. Soudris, and C.E. Goutis, "A
Framework for Partitioning Computational Intensive Applications in Hybrid
Reconfigurable Platforms," presented at IPDPS, 2005

[24] P. Schaumont, K. Sakiyama, A. Hodjat, and I. Verbauwhede, "Embedded
software integration for coarse-grain reconfigurable systems," presented at
18th International Parallel and Distributed Processing Symposium, 2004,
April, pp. 137.

[25] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and
P.Y.K. Cheung, "Reconfigurable computing: architectures and design
methods," in System On Chip: Next Generation Electronics, B. M. Al-Hashimi,
Ed., 2006, pp. 452-493.

[26] R. Hartenstein, "A Decade of Reconfigurable Computing: A Visionary
Retrospective," presented at DATE, 2001, pp. 642-649.

[27] R. Hartenstein, "Trends in Reconfigurable Logic and Reconfigurable
Computing," presented at 9th Int'l Conf. Electronics Circuits Systems, 2002,
vol. 2

[28] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, "Modular
dynamic reconfiguration in Virtex FPGAs," presented at Computers and
Digital Techniques, 2006, May, vol. 153(3), pp. 157-164.

[29] Yan-Xiang Deng, Chao-Jang Hwang, and Der-Chyuan Lou, "Two-Stage
Reconfigurable Computing System Architecture," presented at 18th
International Conference on Systems Engineering, 2005, pp. 389-394.

[30] Wenyin Fu and Katherine Compton, "An Execution Environment for
Reconfigurable Computing," presented at EEE Symposium on Field-
Programmable Custom Computing Machines, 2005

[31] M. Majer, C. Bobda, A. Ahmadinia, and J. Teich, "Packet Routing in
Dynamically Changing Networks on Chip," presented at 19th IEEE
International Parallel and Distributed Processing Symposium, 2005, April pp.
154b - 154b.

[32] A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich, S.P. Fekete, and J.C.
van der Veen, "A practical approach for circuit routing on dynamic
reconfigurable devices," presented at The 16th IEEE International Workshop
on Rapid System Prototyping, 2005, June., pp. 84-90.

 57

[33] Christophe Bobda, Ali Ahmadinia, Mateusz Majer, Jürgen Teich, Sándor P.
Fekete, and Jan van der Veen, "DyNoC: A Dynamic Infrastructure for
Communication in Dynamically Reconfigurable Devices," presented at FPL,
2005, pp. 153-158.

[34] Christophe Bobda and Ali Ahmadinia, "Dynamic Interconnection of
Reconfigurable Modules on Reconfigurable Devices," IEEE Design & Test,
vol. 22(5), 2005

[35] R. Soares, I.S. Silva, and A. Azevedo, "When reconfigurable architecture
meets network-on-chip," presented at 17th Symposium on Integrated Circuits
and Systems Design, 2004, Sept., pp. 216-221.

[36] R. Hecht, S. Kubisch, A. Herrholtz, and D. Timmermann, "Dynamic
reconfiguration with hardwired networks-on-chip on future FPGAs," presented
at International Conference on Field Programmable Logic and Applications,
2005, Aug., pp. 527-530.

[37] A. Kumar, I. Ovadia, J. Huiskens, H. Corporaal, and J. van Meerbergen,
"Reconfigurable Multi-Processor Network-on-CHip on FPGA," presented at
ASCI, 2006

[38] Herb Sutter and James Larus, "Software and the Concurrency Revolution,"
ACM Queue, vol. 3, no. 7, 2005, September

[39] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.
Leiserson, and Sean Lie, "Unbounded Transactional Memory," presented at
11th International Symposium on High-Performance Computer Architecture,
2005, February pp. 316-327.

[40] R. Rajwar, M. Herlihy, and K. Lai, "Virtualizing transactional memory,"
presented at 32nd Annual International Symposium on Computer
Architecture, 2005

[41] Tali Moreshet, R. Iris Bahar, and Maurice Herlihy, "Energy reduction in
multiprocessor systems using transactional memory," presented at
International Symposium on Low Power Electronics and Design, 2005, pp.
331-334.

[42] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg,
M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, "Transactional
memory coherence and consistency," presented at 31st Annual International
Symposium on Computer Architecture, 2004

[43] Janice M. Stone, Harold S. Stone, Phil Heidelberger, and John Turek,
"Multiple Reservations and the Oklahoma Update," presented at IEEE
Parallel & Distributed Technology, 1993, November pp. 58-71.

[44] M. Herlihy and J. E. B. Moss, "Transactional memory: Architectural support
for lock-free data structures," presented at ISCA, 1993, May

[45] S. Stuijk, T. Basten, B. Mesman, and M. Geilen, "Predictable embedding of
large data structures in multiprocessor networks-on-chip," presented at 8th
Euromicro Conference on Digital System Design, 2005, Sept., pp. 388-395.

[46] World Wide Web Consortium (W3C), "Web Services Architecture," 2004,
February [Online]. Available: http://www.w3.org/TR/ws-arch.

[47] World Wide Web Consortium (W3C), "Simple Object Access Protocol (SOAP)
1.1," 2003, [Online]. Available: http://www.w3.org/TR/soap.

[48] Inc UserLand Software, "XML-RPC Specification," 2003, [Online]. Available:
http://www.xmlrpc.com/spec.

[49] World Wide Web Consortium (W3C), "Web Services Description Language
(WSDL) 1.1," 2001, [Online]. Available: http://www.w3.org/TR/wsdl.

[50] OASIS consortium, "OASIS UDDI Specifications TC," 2002, [Online].
Available: http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm.

[51] Ivan Gonzalez, Javier Sanchez-Pastor, Jorge L. Hernandez-Ardieta,
Francisco J. Gomez-Arribas, and Javier Martínez, "Using Reconfigurable
Hardware Through Web Services in Distributed Applications," presented at

 58

Field Programmable Logic and Applications: 14th International Conference,
2004, August, pp. 1110-1112.

[52] William J. Dally and Brian Towles, "Route packets, not wires: on-chip
interconnection networks," presented at Design Automation Conference
(DAC), Las Vegas, NV, 2001, June pp. 684-689.

[53] Bart Vermeulen, John Dielissen, Kees Goosens, and Kalin Ciordas, "Bringing
Communication Networks on chips: Test and Verification Implications," IEEE
Communications Magazine, vol. 41(9), pp. 74-81, 2003, September

[54] A. Bartic, D. Desmet, J. Mignolet, J. Miller, and F. Robert, "Mapping
concurrent applications on Network-on-Chip platforms," presented at IEEE
Workshop on Signal Processing Systems - SIPS, Athens, Greece, 2005, pp.
154-159.

[55] K. Srinivasan, K. S. Chatha, and G. Konjevod, "Linear programming based
techniques for synthesis of network-on-chip architectures," presented at Int.
Conf. Comput. Des.,, 2004, pp. 422-429.

[56] G.Ascia, V.Catania, and M.Palesi, "An Evolutionary Approach to Network-on-
Chip Mapping Problem," presented at IEEE Congress on Evolutionary
Computation, Edinburgh, UK, 2005, September

[57] Hu Jingcao and R. Marculescu, "Energy-aware communication and task
scheduling for network-on-chip architectures under real-time constraints,"
presented at Design, Automation and Test in Europe Conference and
Exhibition, 2004, Feb, vol. 1, pp. 234-239.

[58] J. Hu and R. Marculescu, "Communication and Task Scheduling of
Application-Specific Networks-on-Chip," presented at Computers & Digital
Techniques, 2005, Sep.

[59] Wu Chia-Ming, Chi Hsin-Chou, and Lee Ming-Chao, "Mapping of IP cores to
network-on-chip architectures based on communication task graphs,"
presented at 6th International Conference On ASIC, 2005, Oct., pp. 953- 956.

[60] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli,
"Mapping and configuration methods for multi-use-case networks on chips,"
presented at Asia and South Pacific Conference on Design Automation, 2006,
Jan

[61] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli, "A
Methodology for Mapping Multiple Use-Cases onto Networks on Chips,"
presented at Design, Automation and Test in Europe DATE '06, 2006, March

[62] Peng Yang, Paul Marchal, Chun Wong, Stefaan Himpe, Francky Catthoor,
Patric David, Johan Vounckx, and Rudy Lauwereins, "Cost-Efficient Mapping
of Dynamic Concurrent Tasks in Embedded Real-Time Multimedia Systems,"
in Multiprocessors Systems-on-Chips: Morgan Kaufmann Publishers, 2005,
pp. 313-335.

[63] B. Ahmad, A.T. Erdogan, and S. Khawam, "Architecture of a Dynamically
Reconfigurable NoC for Adaptive Reconfigurable MPSoC," presented at First
NASA/ESA Conference on Adaptive Hardware and Systems, 2006, June pp.
405-411.

[64] M. Ali, M. Welzl, M. Zwicknagl, and S. Hellebrand, "Considerations for fault-
tolerant network on chips," presented at The 17th International Conference on
Microelectronics, 2005

[65] M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M. Kandemir, and M.J.
Irwin, "Fault tolerant algorithms for network-on-chip interconnect," presented
at IEEE Computer society Annual Symposium on VLSI, 2004, Feb., pp. 46-
51.

[66] M. Ali, M. Welzl, and S. Hellebrand, "A dynamic routing mechanism for
network on chip," presented at 23rd NORCHIP Conference, 2005, Nov.

 59

[67] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, "Designing
an Operating System for a Heterogeneous Reconfigurable SoC," presented
at RAW'03 workshop, 2003

[68] Kiran Puttegowda, David I. Lehn Bradley, Jae H. Park, Peter Athanas, and
Mark Jones, "Context Switching in a Run-Time Reconfigurable System," The
Journal of Supercomputing, pp. 239 - 257, 2003.

[69] L. Bubb, C. Pimlott, K. Rees, M. Stewart, and J. Yates, "A Run-Time Support
Environment for Reconfigurable Systems," presented at Euromicro
Symposium on Digital Systems Design, 2001, pp. 135.

[70] B. Randell, P. Lee, and P. C. Treleaven, "Reliability Issues in Computing
System Design," ACM Computing Surveys, pp. 123 - 165, 1978.

[71] Alireza Ejlali, Bashir M. Al-Hashimi, Marcus T. Schmitz, Paul Rosinger, and
Seyed Ghassem Miremadi, "Combined Time and Information Redundancy for
SEU-Tolerance in Energy-Efficient Real-Time Systems," presented at IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2006, April,
pp. 323 - 335.

[72] Carl Carmichael, "Correcting Sinle Event Upsets Through Virtex Partial
Configuration," 2000, June.

[73] Alberto Sangiovanni-Vincentelli, "Defining platform-based design," in EE
Times, 2002, [Online]. Available:
http://www.eetimes.com/news/design/showArticle.jhtml?articleID=16504380.

[74] M. Goudarzi, S. Hessabi, and A. Mycroft, "Overhead-free polymorphism in
network-on-chip implementation of object-oriented models," presented at
Design, Automation and Test in Europe Conference and Exhibition, 2004,
Feb., vol. 2, pp. 1380-1381.

[75] M. Goudarzi, S. Hessabi, and A. Mycroft, "Object-oriented ASIP Design and
Synthesis," presented at Forum on Specification and Design Languages,
Frankfurt., 2003, Sept.

[76] Giovanni Agosta, Francesco Bruschi, Marco Santambrogio, and Donatella
Sciuto, "A Data Oriented Approach to the Design of reconfigurable Stream
Decoders," presented at 3rd Workshop on Embedded Systems for Real-Time
Multimedia, 2005, Sept., pp. 107- 112.

[77] Michael Ullmann and Jόrgen Becker, "Communication Concept for Adaptive
Intelligent Run-Time Systems Supporting Distributed Reconfigurable
Embedded Systems," presented at 20th International Parallel and Distributed
Processing Symposium - IPDPS 2006. , 2006, April.

[78] Ronald Hecht, Stephan Kubisch, Harald Michelsen, Elmar Zeeb, and Dirk
Timmermann, "A Distributed Object System Approach for Dynamic
Reconfiguration," presented at 20th Parallel and Distributed Processing
Symposium - IPDPS 2006. , 2006, April., pp. 8.

[79] V. Nollet, T. Marescaux, P. Avasare, D. Verkest, and J.-Y. Mignolet,
"Centralized run-time resource management in a network-on-chip containing
reconfigurable hardware tiles," presented at Design, Automation and Test in
Europe, 2005, pp. 234-239.

[80] J.T. Russell and M.F. Jacome, "Software power estimation and optimization
for high performance, 32-bit embedded processors," presented at
International Conference in Computer Design, 1998, Oct., pp. 328-333.

[81] Amit Sinha and Anantha P. Chandrakasan, "JouleTrack A Web Based Tool
for Software Energy Profiling," presented at Design Automation Conference,
2001

[82] Amit Sinha, Nathan Ickes, and Anantha P. Chandrakasan, "Instruction Level
and Operating System Profiling for Energy Exposed Software," presented at
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2003,
December., pp. 1044-1057.

[83] ARM, "AMBA Specification (Rev 2.0)," 1999.

 60

[84] ARM, "AMBA AXI Protocol v1.0," 2004.
[85] IBM, "CoreConnect Bus Architecture," 2001.
[86] Kees Goossens, John Dielissen, and Andrei Radulescu, "The Aethereal

network on chip: Concepts, architectures, and implementations," presented at
IEEE Design and Test of Computers, 2005, Sept-Oct, vol. 22(5), pp. 21-31.

[87] Chris Bartels, Jos Huisken, Kees Goossens, Patrick Groeneveld, and Jef van
Meerbergen, "Comparison of An Aethereal Network on Chip and A Traditional
Interconnect for A Multi-Processor DVB-T System on Chip," presented at
Proc. IFIP Int'l Conference on Very Large Scale Integration (VLSI-SoC),
2006, October.

[88] Davide Bertozzi and Luca Benini, "Xpipes: A Network-on-Chip architecture for
Gigascale Systems-on-Chip," IEEE circuits and systems magazine, pp. 18-
31, 2004.

[89] G.M. Amdahl, "Validity of the single-processor approach to achieving large
scale computing capabilities," presented at AFIPS Conference, 1967, Apr.,
vol. 30, pp. 483-485.

[90] John L. Gustafson, "Reevaluating Amdahl's Law," in CACM, vol. 31(5), 1988,
pp. 532-533, [Online]. Available:
http://www.scl.ameslab.gov/Publications/Gus/AmdahlsLaw/Amdahls.html.

[91] Yuan Shi, "Reevaluating Amdahl's Law and Gustafson's Law," 1996,
October., [Online]. Available:
http://joda.cis.temple.edu/~shi/docs/amdahl/amdahl.html.

[92] A.K. Chandra, D. C. Kozen, and L. J. Stockmeyer, "Alternation," ACM Queue,
vol. 28, no. 1, pp. 114-133, 1981, Jan.

[93] Ian Parberry, "Parallel speedup of sequential machines: A defence of the
parallel computation thesis," SIGACT News, 1986.

[94] Leslie M. Goldschlager, "A universal interconnection pattern for parallel
computers," ACM Queue, vol. 29(4), pp. 1073-1086, 1982, October.

[95] Ryan Williams, "Parallelizing time with polynomial circuits," presented at 17th
ACM symposium on Parallelism in algorithms and architectures, 2005, pp.
171-175.

[96] Arnold N. Pears, "CS3 parallel Computing: Lecture 15," Uppsala University,
1996.

[97] Raymond Greenlaw, "A Model Classifying Algorithms as Inherently
Sequential with Applications to Graph Searching," Information and
Computation vol. 97, pp. 133-149, 1992.

[98] E. El-Araby, M. Taher, K. Gaj, T. El-Ghazawi, D. Caliga, and N. Alexandridis,
"System-level parallelism and throughput optimization in designing
reconfigurable computing applications," presented at 18th International
Parallel and Distributed Processing Symposium, 2004, April., pp. 136.

[99] A. Jantsch, "Models of Computation for Networks on Chip," presented at Sixth
International Conference on Application of Concurrency to System Design -
ACSD 2006, 2006, June.

[100] Tai-Yi Huang, Jane W.-S. Liu, and David Hull, "A method for bounding the
effect of DMA I/O interference on program execution time," presented at
Real-Time Systems Symposium, 1996, December . pp. 275-285.

[101] Ivo Bolsens, "Challenges and opportunities for FPGAs," 2003, July.
[102] Xilinx, "Xilinx Solutions for Network Test & Measurement," 2005.
[103] Ahmed Amine Jerraya and Wayne Wolf, "Memory Systems and Compiler

Support for MPSoC Architectures," in Multiprocessors Systems-on-Chips:
Morgan Kaufmann Publishers, 2005, pp. 251-282.

[104] Francois Labonte, Peter Mattson, William Thies, Ian Buck, Christos
Kozyrakis, and Mark Horowitz, "The Stream Virtual Machine," presented at
13th International Conference on Parallel Architectures and Compilation
Techniques, 2004, pp. 267-277.

 61

[105] Jayanth Gummaraju and Mendel Rosenblum, "Stream Programming on
General-Purpose Processors," presented at 38th annual IEEE/ACM
International Symposium on Microarchitecture, Barcelona, Spain, 2005, pp.
343-354.

[106] Claus Schneider, "A Parallel/Serial Trade-Off Methodology for Look-Up Table
Based Decoders," presented at Design Automation Conference, 1997, pp.
498-503.

[107] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux Device
Drivers, 3rd ed, 2005, February.

[108] Eric Lee Green and Randy Kaelber, "AESCrypt: Rijndael encryption for shell
scripts and Ruby.," [Online]. Available: http://aescrypt.sourceforge.net/.

[109] Inc. Underbit Technologies, "MAD: MPEG Audio Decoder," [Online].
Available: http://www.underbit.com/products/mad/.

[110] Adam Donlin, "New tools for FPGA Dynamic Reconfiguration," in Xilinx
Research, 2005, December.

[111] Xilinx, "DS083: Virtex-II Pro and Virtex-II Pro X Platform FPGAs:Complete
Data Sheet," 2005, Octomber.

[112] Xilinx, "UG069: Xilinx University Program Virtex-II Pro Development System
Hardware Reference Manual," 2005, March.

[113] Xilinx, "Embedded System Tools Reference Manual," 2005, July.
[114] Xilinx, "OS and Libraries Document Collection ", 2005, July.
[115] Andy Norton, "Using Xilinx Embedded Processor Subsystems in a Synplify

Design Flow," 2005, May.
[116] Xilinx, "Platfrom Studio User Guide," 2005, February.
[117] Xilinx, "XAPP290: Two Flows for Partial Reconfiguration: Module Based or

Difference Based," 2004, September.
[118] Xilinx, "Development System Reference Guide," pp. 81-107, 2001.
[119] Gregory Mermoud, "A module-Based Dynamic Partial Reconfiguration

tutorial," 2004, November.
[120] Geert Braeckeman, Gerd Van den Branden, Abdellah Touhafi, and Geoffroy

Van Dessel, "Module Based Partial Reconfiguratio: a quick tutorial," 2004,
July.

[121] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, "Modular
dynamic reconfiguration in Virtex FPGAs," presented at FIELD
PROGRAMMABLE LOGIC AND APPLICATIONS, 2006, May

[122] Abdellah Touhafi, Geert Braeckeman, and Van Dessel Geoffroy, "Module
Based Partial and Dynamic Reconfiguration," 2006, March.

[123] Mark Ng and Mike Peattie, "XAPP502: Using a Microprocessor to Configure
Xilinx FPGAs via Slave Serial or SelectMap Mode," 2002, November.

[124] Xilinx, "Xilinx Device Drivers Documentation," 2004, Jun.
[125] Jamie Lin, "Porting Linux to XUPV2P," 2006, February, [Online]. Available:

http://www.eecs.wsu.edu/~jamie/research/LinuxPort/linux_port.htm.
[126] Jamie Lin, "Linux GPIO Device Drivers," 2006, Janurary, [Online]. Available:

http://www.eecs.wsu.edu/~jamie/research/LinuxPort/gpio_driver.htm.
[127] Lu Zhonghai, Yin Bei, and A. Jantsch, "Connection-oriented multicasting in

wormhole-switched networks on chip," presented at IEEE Computer Society
Annual Symposium on Emerging VLSI Technologies and Architectures, 2006,
March.

[128] Nir Arad, "Philips Æthereal Network on Chip," presented at VLSI Architecture
Seminar, 2006, pp. 57.

[129] Wesley Chou, Vicki Shimizu, and Rolf Muralt, "Tiny Tera High Performance
Switching," [Online]. Available: http://tiny-tera.stanford.edu/tiny-tera.

 62

Appendix A. Overview of Xilinx’s hardware, tools and
design flows

A.1 Hardware and tools overview
Xilinx provides us with a set of tools and flows to work with its reconfigurable
hardware.

Figure 52. Architecture overview of Virtex II Pro FPGA

The family of FPGAs that we work with is the Xilinx Virtex II Pro FPGAs (see Figure
52 taken from [111]) that include plenty of resources, including (in XC2VP30) two
PowerPC hard cores, 20000 reconfigurable slices, 140 embedded multipliers and
Block RAMs, 8 Digital Clock Management Units and more than 600 I/Os. Large
designs can fit in these FPGAs and hardware software co-design techniques can be
applied because PowerPC’s can run software and reconfigurable logic can
implement hardware functions.

We use the Xilinx University Program Virtex-II Pro Development System that
provides us a lot of useful external peripherals (see Figure 53 taken from [112]). The
ones that we use are the Compact Flash controller in order to load configuration and
boot Linux from a Compact Flash memory, the RS232 ports to communicate with a
host computer and the DDRAM controller that provides us 256 Mb of external
memory. OF course, we implicitly use the 100MHz System Clock and the JTAG
interface for configuration.

These powerful hardware resources need flexible software in order to reveal their
strengths and this is the case with Xilinx’s software tools. The ISE development
environment (see Figure 54) is ideal for small designs and component creation and
validation because it can easily run Xilinx’s traditional design flow that includes
synthesis, translation, mapping, place and route and load into the FPGA. For
platform-level applications Xilinx provides the advanced development environment
Xilinx Platform Studio (XPS) [113] as we can see in Figure 55. With this complete
systems can be created using PowerPC/Microblaze processors, Xilinx’s IP cores and
custom peripherals.

 63

Figure 53. System Core Diagram for the Development Board

Figure 54. Xilinx ISE development environment

Software development of simple embedded applications is also supported within the
same IDE with the PowerPC/Microblaze compilers, debuggers, simulators, in circuit
debuggers and most importantly the OS and libraries collection (see [114]). XPS
builds the platform which is then implemented with Xilinx’s traditional design flow.
The only difference is that after placement and routing, an initialization of the Block
RAMs with the compiled source code takes place. XPS allows a certain degree of
flexibility. Hardware modules can be imported and exported from other tools including
ISE and Synplicity [115]. Software can be written using external IDEs like Eclipse
which is installed by default with XPS. A complete overview of XPS’s features is
given in its help and documentation [116].

 64

Figure 55. Xilinx XPS development environment

A.2 Dynamic reconfiguration flow
Unfortunately dynamic reconfiguration flow is not supported by current tools and
must be done manually by modifying and running batch files. It is described in detail
in an application note [117] and is based to a restricted subset of the modular design
flow described in [118]. Each module is being synthesized, mapped, placed and
routed independently but is forced to fit into certain slice columns. Then the
components of the system are being merged at bitstream level. Much help is
provided by various tutorials like [119, 120].

If one wants to apply the dynamic reconfiguration flow on platforms generated with
Xilinx’s XPS there are several large problems. First of all the I/O pins used by the
system necessarily span the whole FPGA’s area on most development boards. The
input bitstream has to be fetched from the RAM whose I/Os are usually in the left
side and is written to the ICAP device which lies in the right side. This means that we
need wires running over the width of the design that must be active during
reconfiguration. Xilinx states explicitly that all the connections that span through a
reconfigurable slice should be considered inactive during reconfiguration. Hopefully
this isn’t true if one uses hard macros and significantly modified flow as
demonstrated in [121]. The second problem is that XPS designs can’t fit directly into
the dynamic reconfiguration flow because they use components like the DCM module
which lies outside reconfigurable slices’ area. Hopefully there is a workaround for this
case as well as described in detail at [122]. Note that both these papers were written
in 2006 although the tools are available for more than 5 years.

We went through the dynamic reconfiguration flow ourselves. Simple designs were
easily and successfully made using bus macros. We found difficulties on constraining
more complex designs into slice columns. Wires were running outside our predefined

 65

borders or routing tools were terminating telling that the design is impossible to be
mapped or routed. We moved to XPS project level creating a PowerPC application.
Then we used a simple reconfiguration bitstream created with the “simple” (second)
from the two design flows described in [117] by modifying manually the design with
Xilinx FPGA editor. The bitstream (.bit file) was converted to a variable for use within
software by using the script files found on the Xilinx’s application note [123].
Reconfiguration was realized by using the ICAP module and the HWICAP driver
documented in [124]. We achieved dynamic reconfiguration successfully with this
stream on a running PowerPC system. The code can be found in Appendix C.1 and
uses only three API calls for reconfiguration. It must be noted that connections
between RAM and PowerPC were running over the slice under configuration and
were used during reconfiguration and the design worked perfectly.

A Linux Device Driver for HWICAP doesn’t exist yet but Xilinx promises that will have
one soon and very well integrated into the Linux Operating System [110]. We used
our successfully tested version of HWICAP driver to our Linux Device Driver. We did
not create real reconfiguration streams because in that case we would have to
devote considerable but most importantly unpredictable amount of time dealing with
very low-level problems which are out of the subject of our work. We used instead a
Service Provider able to provide two Core Services that is being considered as
reconfigurable from the Service Broker. We simulate reconfiguration by including a
reconfiguration delay during which the component is unavailable. This simulates
accurately the process of reconfiguration with the only exception of not including the
bandwidth required for transferring the reconfiguration stream from RAM to ICAP.
HWICAP is an OPB peripheral and thus slow enough to make this bandwidth
negligible.

A.3 Montavista Linux
MontaVista Linux is provided by MontaVista. It’s a port of Linux for the Xilinx ml310
board. With the precious help of Jamie [125] we can create a gcc cross compiler for
PowerPC, download the source code for this Linux, compile it and load it along with a
complete file system to the XUP board that we have. She also shows how to
implement some simple device drivers for this Linux [126]. We need and use Linux
because it provides us with a basic level of functionality like file and task
management in order to execute our demonstration applications. Because it’s a
multitasking operating system, we can see the effects of running multiple instances of
our applications that reveal the functionality of the Service Broker and reconfiguration
functionality.

 66

Appendix B. Hardware entities

B.1 Service Interface
package array_types is
 -- CORE TYPE DEFINITIONS
 type word_array_t is array (integer range <>) of
std_logic_vector(31 downto 0);
 type VARIABLE_LENGTHS_t is array(integer range <>) of integer;
 type SERVICE_PROVIDER_DATA_t is record
 SERVICE_ID: integer;
 SERVICE_OUT_PARAMS: integer;
 SERVICE_FAULT_TOLERANCE: boolean;
 end record;
 type SERVICE_PROVIDERS_DATA_t is array(integer range <>) of
SERVICE_PROVIDER_DATA_t;
 type SERVICE_PROVIDER_VARS_t is array(integer range <>, integer
range <>) of integer;

 -- CORE CONSTANT DEFINITIONS
 constant SERVICES_COUNT:integer := 2;
 constant MAX_INPUT_VARS:integer := 4;
 constant MAX_OUTPUT_VARS:integer := 3;
 constant MAX_VAR_WITH_FT: integer := 2;

 constant VARIABLE_LENGTHS_IN : VARIABLE_LENGTHS_t(0 to
MAX_INPUT_VARS-1) := (16, 16, 16, 16);
 constant VARIABLE_LENGTHS_OUT : VARIABLE_LENGTHS_t(0 to
MAX_OUTPUT_VARS-1) := (16, 16, 16);

 constant SERVICE_PROVIDERS_DATA: SERVICE_PROVIDERS_DATA_t(0 to
SERVICES_COUNT-1) := (
 (SERVICE_ID=>0, SERVICE_OUT_PARAMS=>2,
SERVICE_FAULT_TOLERANCE=>TRUE),
 (SERVICE_ID=>1, SERVICE_OUT_PARAMS=>3,
SERVICE_FAULT_TOLERANCE=>FALSE)
);
 constant SERVICE_PROVIDER_VARS: SERVICE_PROVIDER_VARS_t(0 to
SERVICES_COUNT-1, 0 to MAX_OUTPUT_VARS-1) := (
 (16, 16, 0),
 (16, 16, 16)
);

 function GET_OUT_PARAMS(sid: integer) return integer;
 function GET_VAR_LENGTH(sid: integer; var: integer) return
integer;
 function GET_FAULT_TOLERANCE(sid: integer) return boolean;
end array_types;

B.2 Service Interface

entity service_interface is
 Port (
 -- bus interface

 clk : in std_logic;
 reset : in std_logic;
 SBSR_out : out std_logic_vector(31 downto 0);
 SBDR_out : out std_logic_vector(31 downto 0);

 67

 SBDR_in : in std_logic_vector(31 downto 0);
 SBDR_re : in std_logic;
 SBDR_ac : out std_logic;
 SBDR_we : in std_logic;

 -- service interface
 srv_init: out std_logic;
 srv_go: out std_logic;
 srv_done: in std_logic;
 srv_data_out: out std_logic_vector(31 downto 0);
 srv_data_in: in std_logic_vector(31 downto 0);
 srv_data_in_ac: in std_logic;
 srv_current_variable: out std_logic_vector(7 downto 0);
 srv_current_word: out std_logic_vector(31 downto 0);
 srv_return_parameters: in std_logic_vector(7 downto 0);
 srv_var_size: in std_logic_vector(31 downto 0);
 srv_var_size_ac: in std_logic;
 srv_csum: in std_logic_vector(31 downto 0);
 srv_csum_request: out std_logic;
 srv_csum_ac: in std_logic;
 srv_service_id: out std_logic_vector(15 downto 0);
 srv_variable_valid: out std_logic
);
end service_interface;

B.3 Default Variable Manager

entity default_variable_manager is
 port (
 -- Global
 clk : in std_logic;
 reset : in std_logic;
 -- Communication with the interface
 init: in std_logic;
 go: in std_logic;
 done: out std_logic;
 data_out: in std_logic_vector(31 downto 0);
 data_in: out std_logic_vector(31 downto 0);
 data_in_ac: out std_logic;
 current_variable: in std_logic_vector(7 downto 0);
 current_word: in std_logic_vector(31 downto 0);
 return_parameters: out std_logic_vector(7 downto 0);
 var_size: out std_logic_vector(31 downto 0);
 var_size_ac: out std_logic;
 csum: out std_logic_vector(31 downto 0);
 csum_request: in std_logic;
 csum_ac: out std_logic;
 service_id: in std_logic_vector(15 downto 0);
 variable_valid: in std_logic;
 -- Communication with the services
 proc_go: out std_logic;
 proc_done: in std_logic;
 proc_service_id: out std_logic_vector(15 downto 0);
 proc_in_word: in word_array_t(0 to MAX_INPUT_VARS-1);
 proc_in_values: out word_array_t(0 to MAX_INPUT_VARS-1);
 proc_out_word: in word_array_t(0 to MAX_OUTPUT_VARS-1);
 proc_out_we: in std_logic_vector(0 to MAX_OUTPUT_VARS-1);
 proc_out_values: in word_array_t(0 to MAX_OUTPUT_VARS-1);
 proc_out_crc32: in word_array_t(0 to MAX_VAR_WITH_FT-1)
);

 68

end default_variable_manager;

B.4 Default Services

entity default_services is
 port (
 clk: in std_logic;
 reset: in std_logic;
 go: in std_logic;
 done: out std_logic;
 service_id: in std_logic_vector(15 downto 0);
 in_word: out word_array_t(0 to MAX_INPUT_VARS-1);
 in_values: in word_array_t(0 to MAX_INPUT_VARS-1);
 out_word: out word_array_t(0 to MAX_OUTPUT_VARS-1);
 out_we: out std_logic_vector(0 to MAX_OUTPUT_VARS-1);
 out_values: out word_array_t(0 to MAX_OUTPUT_VARS-1);
 out_crc32: out word_array_t(0 to MAX_VAR_WITH_FT-1)
);
end entity;

Appendix C. Source Code

C.1 Reconfiguration through HWICAP

#include "xparameters.h"
#include "xgpio_l.h"
#include "xhwicap.h"

unsigned char stream[5948] = {0, 9, 15, 240, 15, 240, 15, 240, 15,
240, 0, 0, 1, 97, 0, 13, 115, 121, 115, …};

unsigned char strea2[2620] = {0, 9, 15, 240, 15, 240, 15, 240, 15,
240, 0, 0, 1, 97, 0, 11, 115, 121, 115, …};

int main (void) {
 int i=0, j=0; volatile int delay=0; int numTimes = 5; char c;
 XHwIcap hIC;

 XStatus status = XHwIcap_Initialize(
 &hIC,
 XPAR_OPB_HWICAP_0_DEVICE_ID,
 XHI_XC2VP30
);
 if (status != XST_SUCCESS) {
 xil_printf("ICAP Init failed %x status %x\r\n",
 hIC.DeviceIdCode, status);
 exit(1);
 }

 XHwIcap_CommandDesync(&hIC);

 while (1) {
 putchar(c = getchar());
 if (c == '1' | c == '2') {
 unsigned char * ucPtr = c == '1' ? stream : strea2;
 int size = c == '1' ? 1487 : 655;
 switch (XHwIcap_SetConfiguration(&hIC, ucPtr, size)) {

 69

 case XST_SUCCESS:
 xil_printf("XST_SUCCESS\r\n");
 break;
 case XST_BUFFER_TOO_SMALL:
 xil_printf("XST BUFFER TOO SMALL\r\n");
 break;
 case XST_INVALID_PARAM:
 xil_printf("XST INVALID PARAM\r\n");
 break;
 }
 }

 XGpio_mSetDataDirection(XPAR_LEDS_8BIT_BASEADDR,
 1, 0x00000000);

 j = 1;
 for(i=0; i<8; i++) {
 XGpio_mSetDataReg(XPAR_LEDS_8BIT_BASEADDR, 1, j);
 j = j << 1;
 for (delay=0; delay<100000; delay++);
 }
 j = 1;
 j = ~j;
 for(i=0; i<8; i++) {
 XGpio_mSetDataReg(XPAR_LEDS_8BIT_BASEADDR, 1, j);
 j = j << 1;
 for (delay=0; delay<100000; delay++);
 }
 }
 return 0;
}

C.2 rijndaelEncrypt AES encryption function

int rijndaelEncrypt (word8 a[16], word8 b[16], word8
rk[MAXROUNDS+1][4][4])
{
 /* Encryption of one block.
 */
 int r;
 word8 temp[4][4];

 ((word32)temp[0]) = *((word32*)a) ^ *((word32*)rk[0][0]);
 ((word32)temp[1]) = *((word32*)(a+4)) ^ *((word32*)rk[0][1]);
 ((word32)temp[2]) = *((word32*)(a+8)) ^ *((word32*)rk[0][2]);
 ((word32)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
 ((word32)b) = *((word32*)T1[temp[0][0]])
 ^ *((word32*)T2[temp[1][1]])
 ^ *((word32*)T3[temp[2][2]])
 ^ *((word32*)T4[temp[3][3]]);
 ((word32)(b+4)) = *((word32*)T1[temp[1][0]])
 ^ *((word32*)T2[temp[2][1]])
 ^ *((word32*)T3[temp[3][2]])
 ^ *((word32*)T4[temp[0][3]]);
 ((word32)(b+8)) = *((word32*)T1[temp[2][0]])
 ^ *((word32*)T2[temp[3][1]])
 ^ *((word32*)T3[temp[0][2]])
 ^ *((word32*)T4[temp[1][3]]);
 ((word32)(b+12)) = *((word32*)T1[temp[3][0]])
 ^ *((word32*)T2[temp[0][1]])

 70

 ^ *((word32*)T3[temp[1][2]])
 ^ *((word32*)T4[temp[2][3]]);
 for(r = 1; r < ROUNDS-1; r++) {
 ((word32)temp[0]) = *((word32*)b) ^
((word32)rk[r][0]);
 ((word32)temp[1]) = *((word32*)(b+4)) ^
((word32)rk[r][1]);
 ((word32)temp[2]) = *((word32*)(b+8)) ^
((word32)rk[r][2]);
 ((word32)temp[3]) = *((word32*)(b+12)) ^
((word32)rk[r][3]);
 ((word32)b) = *((word32*)T1[temp[0][0]])
 ^ *((word32*)T2[temp[1][1]])
 ^ *((word32*)T3[temp[2][2]])
 ^ *((word32*)T4[temp[3][3]]);
 ((word32)(b+4)) = *((word32*)T1[temp[1][0]])
 ^ *((word32*)T2[temp[2][1]])
 ^ *((word32*)T3[temp[3][2]])
 ^ *((word32*)T4[temp[0][3]]);
 ((word32)(b+8)) = *((word32*)T1[temp[2][0]])
 ^ *((word32*)T2[temp[3][1]])
 ^ *((word32*)T3[temp[0][2]])
 ^ *((word32*)T4[temp[1][3]]);
 ((word32)(b+12)) = *((word32*)T1[temp[3][0]])
 ^ *((word32*)T2[temp[0][1]])
 ^ *((word32*)T3[temp[1][2]])
 ^ *((word32*)T4[temp[2][3]]);
 }
 /* last round is special */
 ((word32)temp[0]) = *((word32*)b) ^ *((word32*)rk[ROUNDS-
1][0]);
 ((word32)temp[1]) = *((word32*)(b+4)) ^ *((word32*)rk[ROUNDS-
1][1]);
 ((word32)temp[2]) = *((word32*)(b+8)) ^ *((word32*)rk[ROUNDS-
1][2]);
 ((word32)temp[3]) = *((word32*)(b+12)) ^
((word32)rk[ROUNDS-1][3]);
 b[0] = T1[temp[0][0]][1];
 b[1] = T1[temp[1][1]][1];
 b[2] = T1[temp[2][2]][1];
 b[3] = T1[temp[3][3]][1];
 b[4] = T1[temp[1][0]][1];
 b[5] = T1[temp[2][1]][1];
 b[6] = T1[temp[3][2]][1];
 b[7] = T1[temp[0][3]][1];
 b[8] = T1[temp[2][0]][1];
 b[9] = T1[temp[3][1]][1];
 b[10] = T1[temp[0][2]][1];
 b[11] = T1[temp[1][3]][1];
 b[12] = T1[temp[3][0]][1];
 b[13] = T1[temp[0][1]][1];
 b[14] = T1[temp[1][2]][1];
 b[15] = T1[temp[2][3]][1];
 ((word32)b) ^= *((word32*)rk[ROUNDS][0]);
 ((word32)(b+4)) ^= *((word32*)rk[ROUNDS][1]);
 ((word32)(b+8)) ^= *((word32*)rk[ROUNDS][2]);
 ((word32)(b+12)) ^= *((word32*)rk[ROUNDS][3]);

 return 0;
}

 71

C.3 synth_full mp3 decoding function

static
void synth_full(struct mad_synth *synth, struct mad_frame const
*frame,
 unsigned int nch, unsigned int ns)
{
 unsigned int phase, ch, s, sb, pe, po;
 mad_fixed_t *pcm1, *pcm2, (*filter)[2][2][16][8];
 mad_fixed_t const (*sbsample)[36][32];
 register mad_fixed_t (*fe)[8], (*fx)[8], (*fo)[8];
 register mad_fixed_t const (*Dptr)[32], *ptr;
 register mad_fixed64hi_t hi;
 register mad_fixed64lo_t lo;

 for (ch = 0; ch < nch; ++ch) {
 sbsample = &frame->sbsample[ch];
 filter = &synth->filter[ch];
 phase = synth->phase;
 pcm1 = synth->pcm.samples[ch];

 for (s = 0; s < ns; ++s) {
 dct32((*sbsample)[s], phase >> 1,
 (*filter)[0][phase & 1], (*filter)[1][phase & 1]);

 pe = phase & ~1;
 po = ((phase - 1) & 0xf) | 1;

 /* calculate 32 samples */

 fe = &(*filter)[0][phase & 1][0];
 fx = &(*filter)[0][~phase & 1][0];
 fo = &(*filter)[1][~phase & 1][0];

 Dptr = &D[0];

 ptr = *Dptr + po;
 ML0(hi, lo, (*fx)[0], ptr[0]);
 MLA(hi, lo, (*fx)[1], ptr[14]);
 MLA(hi, lo, (*fx)[2], ptr[12]);
 MLA(hi, lo, (*fx)[3], ptr[10]);
 MLA(hi, lo, (*fx)[4], ptr[8]);
 MLA(hi, lo, (*fx)[5], ptr[6]);
 MLA(hi, lo, (*fx)[6], ptr[4]);
 MLA(hi, lo, (*fx)[7], ptr[2]);
 MLN(hi, lo);

 ptr = *Dptr + pe;
 MLA(hi, lo, (*fe)[0], ptr[0]);
 MLA(hi, lo, (*fe)[1], ptr[14]);
 MLA(hi, lo, (*fe)[2], ptr[12]);
 MLA(hi, lo, (*fe)[3], ptr[10]);
 MLA(hi, lo, (*fe)[4], ptr[8]);
 MLA(hi, lo, (*fe)[5], ptr[6]);
 MLA(hi, lo, (*fe)[6], ptr[4]);
 MLA(hi, lo, (*fe)[7], ptr[2]);

 *pcm1++ = SHIFT(MLZ(hi, lo));

 pcm2 = pcm1 + 30;

 72

 for (sb = 1; sb < 16; ++sb) {
 ++fe;
 ++Dptr;

 /* D[32 - sb][i] == -D[sb][31 - i] */

 ptr = *Dptr + po;
 ML0(hi, lo, (*fo)[0], ptr[0]);
 MLA(hi, lo, (*fo)[1], ptr[14]);
 MLA(hi, lo, (*fo)[2], ptr[12]);
 MLA(hi, lo, (*fo)[3], ptr[10]);
 MLA(hi, lo, (*fo)[4], ptr[8]);
 MLA(hi, lo, (*fo)[5], ptr[6]);
 MLA(hi, lo, (*fo)[6], ptr[4]);
 MLA(hi, lo, (*fo)[7], ptr[2]);
 MLN(hi, lo);

 ptr = *Dptr + pe;
 MLA(hi, lo, (*fe)[7], ptr[2]);
 MLA(hi, lo, (*fe)[6], ptr[4]);
 MLA(hi, lo, (*fe)[5], ptr[6]);
 MLA(hi, lo, (*fe)[4], ptr[8]);
 MLA(hi, lo, (*fe)[3], ptr[10]);
 MLA(hi, lo, (*fe)[2], ptr[12]);
 MLA(hi, lo, (*fe)[1], ptr[14]);
 MLA(hi, lo, (*fe)[0], ptr[0]);

 *pcm1++ = SHIFT(MLZ(hi, lo));

 ptr = *Dptr - pe;
 ML0(hi, lo, (*fe)[0], ptr[31 - 16]);
 MLA(hi, lo, (*fe)[1], ptr[31 - 14]);
 MLA(hi, lo, (*fe)[2], ptr[31 - 12]);
 MLA(hi, lo, (*fe)[3], ptr[31 - 10]);
 MLA(hi, lo, (*fe)[4], ptr[31 - 8]);
 MLA(hi, lo, (*fe)[5], ptr[31 - 6]);
 MLA(hi, lo, (*fe)[6], ptr[31 - 4]);
 MLA(hi, lo, (*fe)[7], ptr[31 - 2]);

 ptr = *Dptr - po;
 MLA(hi, lo, (*fo)[7], ptr[31 - 2]);
 MLA(hi, lo, (*fo)[6], ptr[31 - 4]);
 MLA(hi, lo, (*fo)[5], ptr[31 - 6]);
 MLA(hi, lo, (*fo)[4], ptr[31 - 8]);
 MLA(hi, lo, (*fo)[3], ptr[31 - 10]);
 MLA(hi, lo, (*fo)[2], ptr[31 - 12]);
 MLA(hi, lo, (*fo)[1], ptr[31 - 14]);
 MLA(hi, lo, (*fo)[0], ptr[31 - 16]);

 *pcm2-- = SHIFT(MLZ(hi, lo));

 ++fo;
 }

 ++Dptr;

 ptr = *Dptr + po;
 ML0(hi, lo, (*fo)[0], ptr[0]);
 MLA(hi, lo, (*fo)[1], ptr[14]);
 MLA(hi, lo, (*fo)[2], ptr[12]);

 73

 MLA(hi, lo, (*fo)[3], ptr[10]);
 MLA(hi, lo, (*fo)[4], ptr[8]);
 MLA(hi, lo, (*fo)[5], ptr[6]);
 MLA(hi, lo, (*fo)[6], ptr[4]);
 MLA(hi, lo, (*fo)[7], ptr[2]);

 *pcm1 = SHIFT(-MLZ(hi, lo));
 pcm1 += 16;

 phase = (phase + 1) % 16;
 }
 }
}
endif

 74

Appendix D. Various topics

D.1 The checksum

When we talk about checksums, the first thing that comes to mind is LFSR.
Unfortunately this robust solution has expensive software implementation. A 32 bit
LFSR checksum can be done with the following routine:

output = input + (output << 1) + (\

(output & (1<<1) ? 1 : 0) ^ \
(output & (1<<5) ? 1 : 0) ^ \
(output & (1<<6) ? 1 : 0) ^ \
(output & (1<<31) ? 1 : 0) \

);

We can see that it includes a lot of unnecessary ‘if’, 32-bit shift, ‘and’ and xor
operations. With some profiling we calculate that it takes almost 40 clock cycles per
iteration for Pentium architecture. In hardware, its implementation is straightforward.

Instead of LFSR we use the following compression method to calculate checksum:

output += input;
output = (output <<1) + (output & 0x80000000?1:0);

This takes 12 clock cycles per iteration for Pentium, more than three times faster
(both compilations used –O3). In hardware this is nothing more than an adder and a
rotating shift register.

acc <= output + input;
process(clk) begin

if (rising_edge(clk)) then
 output <= acc(30 downto 0) & acc(31);
 end if;
end process;

Obviously it’s fast and it consumes very few resources.

D.2 I/O operation efficiency

On an standalone XPS software project (no Linux) we created a program that was
making 10.000 reads and writes on a register in order to benchmark their
performance and choose the best for our implementation.

By calling the code from the original XIo_Out32 and XIo_In32 functions we got the
following profiles:

> Writes: 1680039 clock cycles => 168 c/write
> Reads: 1530060 clock cycles => 153 c/write

After enabling the instruction cache we faced a 268% improvement on reads and
466% improvement on writes.

 75

> Writes: 360091 clock cycles => 36 c/write
> Reads: 570089 clock cycles => 57 c/write

After enabling and the data cache we faced another 172% improvement on reads
which gave us equal read and write times.

> Writes: 360046 clock cycles => 36 c/write
> Reads: 330062 clock cycles => 33 c/write

An assembly instruction (eieio) was used to put a barrier that ensures that all the I/O
opretions complete in sequence. This was executed after our I/O operation making
the whole implementation slower because on an actual run the following was
happening:

stw %0, 0(%1); eieio – Waits
-- loop code
stw %0, 0(%1); eieio – Waits again

We modified the code slightly by putting the eieio instruction before the I/O operation.
This way the branch overhead was coming at free under the I/O synchronization
operation:

eieio; stw %0, 0(%1)
-- loop code doesn’t provide an overhead
eieio ; stw %0, 0(%1) – Waits again

After changing the order of write and eieio in batch_write (10% improvement).

> Writes: 300047 clock cycles => 30 c/write
> Reads: 300050 clock cycles => 30 c/write

Further loop unrolling results, inlining assembly and other tricks didn’t provide any
further acceleration. Because the CPU was running on 300MHz the numbers above
actually mean that a single read/write completes in 10 bus clock cycles.

D.3 XPS project debug and time traces

Testing AES_ACCELERATOR_0: AES_BARE
sending: 555, computing: 118, receiving: 70, total: 743
var[1] = {1CB0CBD9, C9304FA8, AC711D92, 7CE2E30F}
checksum = {06084922}

Testing AES_ACCELERATOR_0: AES_FULL
sending: 427, computing: 118, receiving: 168, total: 713
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308}
checksum = {06084922}

Testing COMB_ACCELERATOR_0: AES_FULL
sending: 427, computing: 118, receiving: 153, total: 698
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308}
checksum = {06084922}

Testing COMB_ACCELERATOR_0: AES_FULL

 76

sending: 427, computing: 118, receiving: 153, total: 698
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308}
checksum = {06084922}

Testing software AES process
time: 1824
var[1] = {FC1B9283, 533D5E1E, 93CD84C3, B09B3308}
checksum = {06084922}

Testing MP3_ACCELERATOR_0: MP3_NO
sending: 215, computing: 34, receiving: 122, total: 371
var[1] = {00009A3A, FFFF5889}

Testing COMB_ACCELERATOR_0: MP3_NO
sending: 171, computing: 34, receiving: 101, total: 306
var[1] = {00009A3A, FFFF5889}

Testing COMB_ACCELERATOR_0: MP3_NO
sending: 171, computing: 34, receiving: 101, total: 306
var[1] = {00009A3A, FFFF5889}

Testing software MP3 process
time: 1056
var[1] = {00009A3A, FFFF5889}

D.4 A quick tutorial in Core Services

We provide this quick tutorial in order to help you get started with Core Services.

At the beginning you should start the Service Builder application by clicking on the
appropriate bat file.

Service Builder’s user interface initializes and from here you can customize Core
Services’ platform by using its menus and dialogs. Useful information about
performance can be found in the status bar.

 77

Once the customization is complete and you are satisfied with the platform you select
Generate from the Platform menu. It asks you for a folder to place the files and Core
Service’s files get generated automatically.

You can see in the following figure the directory hierarchy that gets generated. A
directory gets generated for each accelerator on the pcores directory. All the software
components lie in the “linux device driver and api” directory. Service Builder
automatically saves a copy of the system configuration in that folder in order to be
able to open it and find out what current configuration provides.

Then hardware generation using XPS takes place. You can find a step-by-step video
presentation on my web site lookfwd.doitforme.gr/projects on this subject. An
overview is provided here.

1. Create a new project by using Base System Builder. The project should represent
your computational needs and also don’t occupy the whole FPGA area in order to
leave space for accelerator’s hardware. You may need to consult Jamie’s page [125]
to find details on a Base System that can run Linux. You may find that a Ethernet
MAC is not necessary for simple experiments because it takes considerable time to
synthesize.

 78

2. Import each design from the pcores folder by using the Import Peripheral Wizard
(Tools > Create/Import Peripheral). Use the “Add Library” command to resolve any
library dependencies.
3. Use Add/Edit Cores dialog (Project > Add/Edit Cores) to connect accelerating
components to the system. Do the appropriate bus connections and Generate
Addresses.
4. Do the rest of the flow for hardware generation as described in Jamie’s page [125].

At the end of this process you will have in the implementation folder of your project a
download.bit file that contains the bitstream for you application. Then you have to
create the software by following the software generation flow described in Jamie’s
page [125]. You generate a cross compiler for PowerPC and a MontaVista linux for
the platform.

Then you take the files from the “linux device driver and api” for cross compilation.
The following Makefile was used for compiling our driver and might be found to be
useful:

KERNELDIR=/root/Desktop/cross/linuxppc_2_4_devel

include $(KERNELDIR)/.config

CC = powerpc-405-linux-gnu-gcc
LD = powerpc-405-linux-gnu-ld
CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \
 -I$(KERNELDIR)/arch/ppc \
 -O2 -Wall

ifdef CONFIG_SMP
 CFLAGS += -D__SMP__ -DSMP -Wall
endif

all: cs.o ioctltest

ioctltest: ioctltest.c core_services.c core_services.h csdriver.h
aesdefault.c mp3default.c
 ${CC} -Wall -O ioctltest.c core_services.c aesdefault.c
mp3default.c -o ioctltest
csdriver.o: csdriver.c reconf.c reconf.h csdriver.h low_level_io.h
platform.h
platform.o: platform.c platform.h

cs.o: platform.o csdriver.o
 $(LD) -r -o $@ platform.o csdriver.o

clean:
 rm -f csdriver.o ioctltest cs.o platform.o

Inside core_services.h you can find macros that wrap the core services API and
provide a plain function API for our Core Services. You can see in the following
section these functions for our case:

#define aesService(a,b,rk, redundancy) ({ \
unsigned int *aes_inargv[] = {a, rk}; \
unsigned int aes_inargc[] = {4, 44}; \
unsigned int *aes_outv[] = {b}; \

 79

unsigned int outargc[1]; \
 highLevelCallService(aesdefault, redundancy, AES_SERVICE, 2,
aes_inargv, aes_inargc, aes_outv, outargc); \
})

#define mp3Service(parm, ret) ({ \
unsigned int *mp3_inargv[] = {parm}; \
unsigned int mp3_inargc[] = {17}; \
unsigned int *mp3_outv[] = [65]; \
unsigned int outargc[1]; \
 highLevelCallService(mp3default, 1, MP3_SERVICE, 1, mp3_inargv,
mp3_inargc, mp3_outv, outargc); \
})

These can get called from within application code as simply as this:

int rijndaelEncrypt (word8 a[16], word8 b[16], word8
rk[MAXROUNDS+1][4][4]) {
 aesService(a,b,rk, 2);
}

inarg[0] = phase << 5 | 0;
memcpy(&inarg[1], fx, 32);
memcpy(&inarg[9], fe, 32);
mp3Service(inarg, mp3_outv0);
*pcm1++ = mp3_outv0[0];

Don’t forget to include the Core Services’ header file:

#include "core_services.h"

Then you copy the compiled files to the compact flash and you can load the driver by
typing insmod cs.o and create file entries to its processes by using makenod
/dev/devX -c 254 0

You may alternatively automate this process with a batch file like this (in our case we
have three Service Providers)

#!/bin/sh
insmod cs.o
mknod /dev/csbroker c 254 0
mknod /dev/cs0 c 254 1
mknod /dev/cs1 c 254 2
mknod /dev/cs2 c 254 3

Finally you can create performance logs on the Xilinx platform by using our
“mthrough” utility to measure the throughput like this:

cat 02-counterstrike-truth-trt.mp3 | ./aescrypt -k keyfile.txt -s 128
| ./mthrough > /dev/null 2>> aes0.log &
cat 02-counterstrike-truth-trt.mp3 | ./aescrypt -k keyfile.txt -s 128
| ./mthrough > /dev/null 2>> aes1.log &
cat 02-counterstrike-truth-trt.mp3 | ./aescrypt -k keyfile.txt -s 128
| ./mthrough > /dev/null 2>> aes2.log &
./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3
2>> mp30.log &
./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3
2>> mp31.log &

 80

./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3
2>> mp32.log &
./minimad | ./mthrough > /dev/null < 02-counterstrike-truth-trt.mp3
2>> mp33.log &

Some other useful procedure:

Compiling the minimad mp3 player under windows (cygwin)

$ configure --disable-shared --enable-profiling
$ make
$ make minimad.exe
$ gcc -Wall -march=i486 -g -O -fforce-mem -fforce-addr -fthread-jumps
-fcse-follow-jumps -fcse-skip-blocks -fexpensive-optimizations -
fregmove -fschedule-insns2 -fstrength-reduce -o minimad.exe minimad.o
version.o fixed.o bit.o timer.o stream.o frame.o synth.o decoder.o
layer12.o layer3.o huffman.o

In order to run applications like minimad on linux ppc you have to cross-compile it
using the following instructions:

./configure –disable-shared –enable-profiling --build=`config.guess`
--target=powerpc-405-linux-gnu --host=powerpc-405-linux-gnu
make && make minimad

You may have to modify slightly the Makefiles in order to include core_service’
framework’s files.

Using the cross compiled gprof:

Powerpc-405-linux-gnu-pgrof minimad > log_ppc405.txt

 81

Appendix E. Advanced implementation issues
E.1 On networks-on-chip supporting multicasting
The need to support multicasting is a nice feature for NoCs but there are not so many
practical applications that seem to exploit it. With Core Services one can use it to
gain a significant decrease of communication costs on Core Services that require
fault tolerance. If a fault tolerance of n redundant computations per computation is
required and n hardware accelerators are readily available, the total communication
time on the service requester is decreased to almost 1 n of the original. As we
discussed in section 3.4 communication cost is not only considerable but can be
significantly larger and much less deterministic than the computation cost.

A recent work in multicasting on a mesh network with deadlock freedom is being
presented on [127]. We will use their notions for our multicast implementation. It must
be noted that there may be extensions to the Æthereal to support multicasting [128]
by using scheduling algorithms from tiny-tera [129].

Figure 56. Multicasting scheme of Core Services

The service request phase (Phase I) is identical with the unicast NoC
implementation. In service execute (Phase II) the service requester instead of
passing the parameters to each service provider in sequence, as in the unicast case,
it setups a group by using a packet with “multicast setup” PacketType. If a successful
acknowledgment is received then the requester becomes a group master and can
send data via the virtual multicast channel (see Figure 56). Then it sends the
parameters to all the providers with a single multicast packet (PacketType: “multicast
data”) via the dedicated multicast channel (identified by its MultiID). At the end of this
transaction, a group release takes place, by sending an appropriate packet
(PacketType: “multicast group release”).

Obviously, this implementation of multicasting requires a significant overhead of
establishing and the releasing the virtual channel. It gives considerable advantages
only on big packets of parameters and increased number of computation
redundancy. If more efficient implementation techniques arise, the use of multicasting
can give a decrease to almost 1 n on the total parameter passing communication
cost and the associated energy.

 82

E.2 Interfacing external networks: A case study
A SoC using the Core Services methodology can also be extended to provide and/or
consume services from off-chip networks either global like the internet or local on the
same board/system. This can be done with special pieces of hardware, bridges, that
interface all the aspects of the external network to the internal and vice versa.

For example, we are going to see how a Core Service can invoke a web via a
network interface. Suppose that we have a Core Service for an embedded GIS
application that takes as parameters the latitude and longitude and returns the
temperature at that position. This way the application can show temperature maps
over a map. The first version of this product used static weather prediction based on
a model of the weather, current date and a temperature sensor. Obviously this was
quite inaccurate but the company decided to release it this way and improve it in
future version if it received positive feedback. They did it by using a default software
implementation running on the same processor as the application.

The positive feedback actually came and it was decided to make the application
more accurate by using data from the internet, if an internet connection is available.
A processor with 802.11b wireless interface already existed on-chip from the first
version to allow the user to get waypoints and tracking information and to provide
software and map upgrades.

In order to provide this upgrade, they have just to modify slightly the software of the
system. These are the steps:

1. The internet-enabled processor must run a process that checks if internet
connection is available (probably it does it already)

2. If internet connection is available it registers itself to the service broker as a
provider of the Core Service. If not, then it un-registers itself. It must use an
attractive performance parameter in order to outbalance the default
implementation.

3. When the processor receives such a service request, it wraps the latitude
and longitude in a REST compliant request (see section Chapter 2.) and
sends it to a web service provider like weather.gov (www.weather.gov/xml).

4. When it receives the response the processor parses it and retrieves the
temperature information. Then it forms a response packet and sends it back
to the Core Service request issuer.

 83

Figure 57. External web service request example

We can see the final process in Figure 57. Unarguably using Core Services makes
the system much more flexible. There was no need to change the application
software so backwards compatibility is being retained. By changing only platform’s
firmware we achieved better accuracy. Another advantage is that the communication
overhead and the performance are minimized effectively without explicit effort. The
on-chip communication infrastructure is being loaded only with the light Core
Services messaging and not with any heavyweight xml-http text transferring. All the
web text-oriented operations are being performed in the bridge that is probably
already optimized for web operations e.g. have better string processing support.

 84

Appendix F. API documentation

As you can see the low level and the high level API are easy to use and reflect
directly Core Service’s mechanics.

F.1 Low level API

int getBroker();

This functionreturns a handle to the Service Broker. This handle can be used to get
and return Service Providers’ for specific services.

void returnBroker(int hBroker);

This function clears the handle to the Service Broker and frees the reference. The
reference is invalid after this function.

int getServiceProviderHandler(int provider_id);

This function creates a handler for a service provider. The handler is just for
accelerating future references to it and it shouldn’t be used for services until
requested explicitly with a call to the getServiceProviders function.

void returnServiceProviderHandler(int sph);

This function destroys a handler for a Service Provider. The handler is invalid and
can’t get used after this function.

int * initializeCSHandlers(int hBroker);

This initializes handlers for all the Service Providers available on the system. These
handlers are just for accelerating future references to it and shouldn’t be used for
services until requested explicitly with a call to the getServiceProviders function.

void releaseCSHandlers(int hBroker, int * csHandlers);

This function releases handler for a Service Providers of initialized by
initializeCSHandlers.

int getNumberOfProviders(int hBroker);

A utility function able to retrieve the number of Service Providers available on the
system.

void getServiceProviders(int hBroker, unsigned int sid,
unsigned int redundancy, service_request_t * providers);

This is the main function used for provider allocation. It takes describes the service
ID and the required amount of redundancy for the system. After this call the hardware
accelerators (Service Provider) are reserved by the process until explicitly freed with
a call to returnServiceProviders.

 85

void returnServiceProviders(int hBroker, service_request_t *
providers);

This function returns the Service Provider from the current process and makes them
available for the other processes or processors.

unsigned int callService(
 unsigned int hProvider,
 unsigned int sid,
 unsigned int vars,
 unsigned int **inargv,
 unsigned int *inargc,
 unsigned int **outargv,
 unsigned int *outargc,
 unsigned int ftmode,
 unsigned int *checksums
);

With this function we call a Core Service on a given service provider. Service call’s
parameters are passed and result parameters as well as checksums are being
provided back.

void printResults(unsigned int vars, unsigned int **outargv,
unsigned int *outargc, unsigned int *checksums);

This utility function can be used for printing easily the results of a Service Call. It is
useful for debugging.

Core Service’s IDs:

A service ID is generated for each Core Service in the system. For our application
these are:

#define MP3_SERVICE 0
#define AES_SERVICE 1

Fault tolerance modes:

#define FT_MODE_NO_FT 0
#define FT_MODE_FT_FULL 1
#define FT_MODE_FT_BARE 2

Three fault tolerance mode constants are supported. FT_MODE_NO_FT is used
when the hardware has no support for fault tolerance. FT_MODE_FT_FULL is used
for using fault tolerance and returning the results and the checksums.
FT_MODE_FT_BARE FULL is used for using fault tolerance and returning only
checksums.

F.2 High level API
A function template_fun which provides the default software implementation is
defined in the high level API in the following manner:

typedef int (*template_fun)(unsigned int vars, unsigned int
**inargv, unsigned int *inargc, unsigned int **outargv,

 86

unsigned int *outargc, unsigned int ftmode, unsigned int
*checksums);

The function used to invoke a Core Service is the following.

unsigned int highLevelCallService(
 template_fun fun,
 int redundancy,
 unsigned int sid,
 unsigned int vars,
 unsigned int **inargv,
 unsigned int *inargc,
 unsigned int **outargv,
 unsigned int *outargc
);

As we can see the default implementation is provided, the level of fault tolerance (up
to 16) and the usual in and out parameters description. Checksums are not provided
because they are used internally on this functions and fault tolerance is guaranteed.
This function runs the whole process of allocating Service Builder, searching for
available Service Providers and checking checsums to provide fault tolerance.

On top of these function application dependent macros are being used to provide a
function-level API. They initialize the arguments given to highLevelCallService
according to platforms’ specification. In the case of AES service this has the following
form:

#define aesService(a,b,rk, redundancy) ({ \
unsigned int *aes_inargv[] = {a, rk}; \
unsigned int aes_inargc[] = {4, 44}; \
unsigned int *aes_outv[] = {b}; \
unsigned int outargc[1]; \
 highLevelCallService(aesdefault, redundancy, AES_SERVICE, 2,
aes_inargv, aes_inargc, aes_outv, outargc); \
})

	1.1 Multiprocessor System-on-chips
	1.2 On-chip communication
	1.3 Reconfigurable hardware
	1.4 The future
	2.1 Web services
	2.2 Components of a Core Services system
	2.3 Advantages of Core Services
	2.3.1 Run-Time Mapping
	2.3.2 Reconfigurable Hardware Management
	2.3.3 Fault tolerance
	2.3.4 Platform based design
	2.4 Related Work
	3.1 The methodology
	3.2 Core Services’ communication protocol and algorithms
	3.2.1 Phase I. Service request
	3.2.1.1 Service Request
	3.2.1.2 Service assignment
	3.2.1.3 Why is a service broker needed?
	3.2.1.4 Why does a service broker make the service assignment?

	3.2.2 Phase II. Service execute
	3.2.2.1 Parameter passing
	3.2.2.2 Response getting
	3.2.2.3 Free resource

	3.2.3 Mapping algorithm
	3.2.4 Reconfiguration management

	3.3 Implementation issues
	3.3.1 On a bus based system (CoreConnect/Amba)
	3.3.2 On networks-on-chip

	3.4 What to make a Core Service?
	3.4.1 Estimating speedup margins
	3.4.2 Estimating communication overhead
	3.4.3 Other aspects

	4.1 Implementation of Core Services on Xilinx’s platform
	4.1.1 Hardware components
	4.1.2 Linux Device Driver and the API
	4.1.3 Service Builder platform generator

	4.2 Applying the methodology on the two demonstration applications
	5.1 Benchmarking and results
	5.2 Summary
	5.3 Conclusion and future work
	 References
	 Appendix A. Overview of Xilinx’s hardware, tools and design flows
	A.1 Hardware and tools overview
	A.2 Dynamic reconfiguration flow
	A.3 Montavista Linux

	 Appendix B. Hardware entities
	B.1 Service Interface
	B.2 Service Interface
	B.3 Default Variable Manager
	B.4 Default Services

	Appendix C. Source Code
	C.1 Reconfiguration through HWICAP
	C.2 rijndaelEncrypt AES encryption function
	C.3 synth_full mp3 decoding function

	 Appendix D. Various topics
	D.1 The checksum
	D.2 I/O operation efficiency
	D.3 XPS project debug and time traces
	D.4 A quick tutorial in Core Services

	 Appendix E. Advanced implementation issues
	E.1 On networks-on-chip supporting multicasting
	E.2 Interfacing external networks: A case study

	 Appendix F. API documentation
	F.1 Low level API
	F.2 High level API

